view liboctave/numeric/DASSL-opts.in @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents b3717fd85e49
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2002-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

CLASS = "DASSL"

INCLUDE = "DAE.h"

OPTION
  NAME = "absolute tolerance"
  DOC_ITEM
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.

  END_DOC_ITEM
  TYPE = "Array<double>"
  SET_ARG_TYPE = "const $TYPE&"
  INIT_BODY
    $OPTVAR.resize (dim_vector (1, 1));
    $OPTVAR(0) = ::sqrt (std::numeric_limits<double>::epsilon ());
  END_INIT_BODY
  SET_CODE
    void set_$OPT (double val)
      {
        $OPTVAR.resize (dim_vector (1, 1));
        $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (std::numeric_limits<double>::epsilon ());
        m_reset = true;
      }

    void set_$OPT (const $TYPE& val)
      { $OPTVAR = val; m_reset = true; }
  END_SET_CODE
END_OPTION

OPTION
  NAME = "relative tolerance"
  DOC_ITEM
Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.

The local error test applied at each integration step is

@example
@group
  abs (local error in x(i))
       <= rtol(i) * abs (Y(i)) + atol(i)
@end group
@end example

  END_DOC_ITEM
  TYPE = "Array<double>"
  SET_ARG_TYPE = "const $TYPE&"
  INIT_BODY
    $OPTVAR.resize (dim_vector (1, 1));
    $OPTVAR(0) = ::sqrt (std::numeric_limits<double>::epsilon ());
  END_INIT_BODY
  SET_CODE
    void set_$OPT (double val)
      {
        $OPTVAR.resize (dim_vector (1, 1));
        $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (std::numeric_limits<double>::epsilon ());
        m_reset = true;
      }

    void set_$OPT (const $TYPE& val)
      { $OPTVAR = val; m_reset = true; }
  END_SET_CODE
END_OPTION

OPTION
  NAME = "compute consistent initial condition"
  DOC_ITEM
If nonzero, @code{dassl} will attempt to compute a consistent set of initial
conditions.  This is generally not reliable, so it is best to provide
a consistent set and leave this option set to zero.

  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "0"
  SET_EXPR = "val"
END_OPTION

OPTION
  NAME = "enforce nonnegativity constraints"
  DOC_ITEM
If you know that the solutions to your equations will always be
non-negative, it may help to set this parameter to a nonzero
value.  However, it is probably best to try leaving this option set to
zero first, and only setting it to a nonzero value if that doesn't
work very well.

  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "0"
  SET_EXPR = "val"
END_OPTION

OPTION
  NAME = "initial step size"
  DOC_ITEM
Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.

  END_DOC_ITEM
  TYPE = "double"
  INIT_VALUE = "-1.0"
  SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION

OPTION
  NAME = "maximum order"
  DOC_ITEM
Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.

  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "-1"
  SET_EXPR = "val"
END_OPTION

OPTION
  NAME = "maximum step size"
  DOC_ITEM
Setting the maximum stepsize will avoid passing over very large
regions  (default is not specified).

  END_DOC_ITEM
  TYPE = "double"
  INIT_VALUE = "-1.0"
  SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION

OPTION
  NAME = "step limit"
  DOC_ITEM
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "-1"
  SET_EXPR = "(val >= 0) ? val : -1"
END_OPTION