view liboctave/numeric/randpoisson.cc @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 32f4357ac8d9
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2006-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

/* Original version written by Paul Kienzle distributed as free
   software in the in the public domain.  */

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cmath>
#include <cstddef>

#include "f77-fcn.h"
#include "lo-error.h"
#include "lo-ieee.h"
#include "randmtzig.h"
#include "randpoisson.h"

namespace octave
{
  static double xlgamma (double x)
  {
    return std::lgamma (x);
  }

  /* ---- pprsc.c from Stadloeber's winrand --- */

  /* flogfak(k) = ln(k!) */
  static double flogfak (double k)
  {
#define C0  9.18938533204672742e-01
#define C1  8.33333333333333333e-02
#define C3 -2.77777777777777778e-03
#define C5  7.93650793650793651e-04
#define C7 -5.95238095238095238e-04

    static double logfak[30L] =
      {
        0.00000000000000000,   0.00000000000000000,   0.69314718055994531,
        1.79175946922805500,   3.17805383034794562,   4.78749174278204599,
        6.57925121201010100,   8.52516136106541430,  10.60460290274525023,
        12.80182748008146961,  15.10441257307551530,  17.50230784587388584,
        19.98721449566188615,  22.55216385312342289,  25.19122118273868150,
        27.89927138384089157,  30.67186010608067280,  33.50507345013688888,
        36.39544520803305358,  39.33988418719949404,  42.33561646075348503,
        45.38013889847690803,  48.47118135183522388,  51.60667556776437357,
        54.78472939811231919,  58.00360522298051994,  61.26170176100200198,
        64.55753862700633106,  67.88974313718153498,  71.25703896716800901
      };

    double r, rr;

    if (k >= 30.0)
      {
        r  = 1.0 / k;
        rr = r * r;
        return ((k + 0.5)*std::log (k) - k + C0
                + r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
      }
    else
      return (logfak[static_cast<int> (k)]);
  }

  /******************************************************************
   *                                                                *
   * Poisson Distribution - Patchwork Rejection/Inversion           *
   *                                                                *
   ******************************************************************
   *                                                                *
   * For parameter my < 10, Tabulated Inversion is applied.         *
   * For my >= 10, Patchwork Rejection is employed:                 *
   * The area below the histogram function f(x) is rearranged in    *
   * its body by certain point reflections. Within a large center   *
   * interval variates are sampled efficiently by rejection from    *
   * uniform hats. Rectangular immediate acceptance regions speed   *
   * up the generation. The remaining tails are covered by          *
   * exponential functions.                                         *
   *                                                                *
   ******************************************************************
   *                                                                *
   * FUNCTION :   - pprsc samples a random number from the Poisson  *
   *                distribution with parameter my > 0.             *
   * REFERENCE :  - H. Zechner (1994): Efficient sampling from      *
   *                continuous and discrete unimodal distributions, *
   *                Doctoral Dissertation, 156 pp., Technical       *
   *                University Graz, Austria.                       *
   * SUBPROGRAM : - drand(seed) ... (0,1)-Uniform generator with    *
   *                unsigned long integer *seed.                    *
   *                                                                *
   * Implemented by H. Zechner, January 1994                        *
   * Revised by F. Niederl, July 1994                               *
   *                                                                *
   ******************************************************************/

  static double f (double k, double l_nu, double c_pm)
  {
    return exp (k * l_nu - flogfak (k) - c_pm);
  }

  static double pprsc (double my)
  {
    static double my_last = -1.0;
    static double m,  k2, k4, k1, k5;
    static double dl, dr, r1, r2, r4, r5, ll, lr, l_my, c_pm,
      f1, f2, f4, f5, p1, p2, p3, p4, p5, p6;
    double        Dk, X, Y;
    double        Ds, U, V, W;

    if (my != my_last)
      {                               /* set-up           */
        my_last = my;
        /* approximate deviation of reflection points k2, k4 from my - 1/2 */
        Ds = std::sqrt (my + 0.25);

        /* mode m, reflection points k2 and k4, and points k1 and k5,      */
        /* which delimit the centre region of h(x)                         */
        m  = std::floor (my);
        k2 = ceil (my - 0.5 - Ds);
        k4 = std::floor (my - 0.5 + Ds);
        k1 = k2 + k2 - m + 1L;
        k5 = k4 + k4 - m;

        /* range width of the critical left and right centre region        */
        dl = (k2 - k1);
        dr = (k5 - k4);

        /* recurrence constants r(k)=p(k)/p(k-1) at k = k1, k2, k4+1, k5+1 */
        r1 = my / k1;
        r2 = my / k2;
        r4 = my / (k4 + 1.0);
        r5 = my / (k5 + 1.0);

        /* reciprocal values of the scale parameters of exp. tail envelope */
        ll =  std::log (r1);                        /* expon. tail left */
        lr = -std::log (r5);                        /* expon. tail right*/

        /* Poisson constants, necessary for computing function values f(k) */
        l_my = std::log (my);
        c_pm = m * l_my - flogfak (m);

        /* function values f(k) = p(k)/p(m) at k = k2, k4, k1, k5          */
        f2 = f (k2, l_my, c_pm);
        f4 = f (k4, l_my, c_pm);
        f1 = f (k1, l_my, c_pm);
        f5 = f (k5, l_my, c_pm);

        /* area of the two centre and the two exponential tail regions     */
        /* area of the two immediate acceptance regions between k2, k4     */
        p1 = f2 * (dl + 1.0);                            /* immed. left    */
        p2 = f2 * dl         + p1;                       /* centre left    */
        p3 = f4 * (dr + 1.0) + p2;                       /* immed. right   */
        p4 = f4 * dr         + p3;                       /* centre right   */
        p5 = f1 / ll         + p4;                       /* exp. tail left */
        p6 = f5 / lr         + p5;                       /* exp. tail right*/
      }

    for (;;)
      {
        /* generate uniform number U -- U(0, p6)                           */
        /* case distinction corresponding to U                             */
        if ((U = rand_uniform<double> () * p6) < p2)
          {                                            /* centre left      */

            /* immediate acceptance region
               R2 = [k2, m) *[0, f2),  X = k2, ... m -1 */
            if ((V = U - p1) < 0.0)  return (k2 + std::floor (U/f2));
            /* immediate acceptance region
               R1 = [k1, k2)*[0, f1),  X = k1, ... k2-1 */
            if ((W = V / dl) < f1 )  return (k1 + std::floor (V/f1));

            /* computation of candidate X < k2, and its counterpart Y > k2 */
            /* either squeeze-acceptance of X or acceptance-rejection of Y */
            Dk = std::floor (dl * rand_uniform<double> ()) + 1.0;
            if (W <= f2 - Dk * (f2 - f2/r2))
              {                                        /* quick accept of  */
                return (k2 - Dk);                      /* X = k2 - Dk      */
              }
            if ((V = f2 + f2 - W) < 1.0)
              {                                        /* quick reject of Y*/
                Y = k2 + Dk;
                if (V <= f2 + Dk * (1.0 - f2)/(dl + 1.0))
                  {                                    /* quick accept of  */
                    return (Y);                        /* Y = k2 + Dk      */
                  }
                if (V <= f (Y, l_my, c_pm))  return (Y); /* final accept of Y*/
              }
            X = k2 - Dk;
          }
        else if (U < p4)
          {                                            /* centre right     */
            /*  immediate acceptance region
                R3 = [m, k4+1)*[0, f4), X = m, ... k4    */
            if ((V = U - p3) < 0.0)  return (k4 - std::floor ((U - p2)/f4));
            /* immediate acceptance region
               R4 = [k4+1, k5+1)*[0, f5)                */
            if ((W = V / dr) < f5 )  return (k5 - std::floor (V/f5));

            /* computation of candidate X > k4, and its counterpart Y < k4 */
            /* either squeeze-acceptance of X or acceptance-rejection of Y */
            Dk = std::floor (dr * rand_uniform<double> ()) + 1.0;
            if (W <= f4 - Dk * (f4 - f4*r4))
              {                                        /* quick accept of  */
                return (k4 + Dk);                      /* X = k4 + Dk      */
              }
            if ((V = f4 + f4 - W) < 1.0)
              {                                        /* quick reject of Y*/
                Y = k4 - Dk;
                if (V <= f4 + Dk * (1.0 - f4)/ dr)
                  {                                    /* quick accept of  */
                    return (Y);                        /* Y = k4 - Dk      */
                  }
                if (V <= f (Y, l_my, c_pm))  return (Y); /* final accept of Y*/
              }
            X = k4 + Dk;
          }
        else
          {
            W = rand_uniform<double> ();
            if (U < p5)
              {                                        /* expon. tail left */
                Dk = std::floor (1.0 - std::log (W)/ll);
                if ((X = k1 - Dk) < 0L)  continue;     /* 0 <= X <= k1 - 1 */
                W *= (U - p4) * ll;                    /* W -- U(0, h(x))  */
                if (W <= f1 - Dk * (f1 - f1/r1))
                  return (X);                          /* quick accept of X*/
              }
            else
              {                                        /* expon. tail right*/
                Dk = std::floor (1.0 - std::log (W)/lr);
                X  = k5 + Dk;                          /* X >= k5 + 1      */
                W *= (U - p5) * lr;                    /* W -- U(0, h(x))  */
                if (W <= f5 - Dk * (f5 - f5*r5))
                  return (X);                          /* quick accept of X*/
              }
          }

        /* acceptance-rejection test of candidate X from the original area */
        /* test, whether  W <= f(k),    with  W = U*h(x)  and  U -- U(0, 1)*/
        /* log f(X) = (X - m)*log(my) - log X! + log m!                    */
        if (std::log (W) <= X * l_my - flogfak (X) - c_pm)  return (X);
      }
  }
  /* ---- pprsc.c end ------ */

  /* The remainder of the file is by Paul Kienzle */

  /* Table size is predicated on the maximum value of lambda
   * we want to store in the table, and the maximum value of
   * returned by the uniform random number generator on [0,1).
   * With lambda==10 and u_max = 1 - 1/(2^32+1), we
   * have poisson_pdf(lambda,36) < 1-u_max.  If instead our
   * generator uses more bits of mantissa or returns a value
   * in the range [0,1], then for lambda==10 we need a table
   * size of 46 instead.  For long doubles, the table size
   * will need to be longer still.  */
#define TABLESIZE 46

  /* Given uniform u, find x such that CDF(L,x)==u.  Return x. */

  template <typename T>
  static void
  poisson_cdf_lookup (double lambda, T *p, std::size_t n)
  {
    double t[TABLESIZE];

    /* Precompute the table for the u up to and including 0.458.
     * We will almost certainly need it. */
    int intlambda = static_cast<int> (std::floor (lambda));
    double P;
    int tableidx;
    std::size_t i = n;

    t[0] = P = exp (-lambda);
    for (tableidx = 1; tableidx <= intlambda; tableidx++)
      {
        P = P*lambda/static_cast<double> (tableidx);
        t[tableidx] = t[tableidx-1] + P;
      }

    while (i-- > 0)
      {
        double u = rand_uniform<double> ();

        /* If u > 0.458 we know we can jump to floor(lambda) before
         * comparing (this observation is based on Stadlober's winrand
         * code). For lambda >= 1, this will be a win.  Lambda < 1
         * is already fast, so adding an extra comparison is not a
         * problem. */
        int k = (u > 0.458 ? intlambda : 0);

        /* We aren't using a for loop here because when we find the
         * right k we want to jump to the next iteration of the
         * outer loop, and the continue statement will only work for
         * the inner loop. */
      nextk:
        if (u <= t[k])
          {
            p[i] = static_cast<T> (k);
            continue;
          }
        if (++k < tableidx)
          goto nextk;

        /* We only need high values of the table very rarely so we
         * don't automatically compute the entire table. */
        while (tableidx < TABLESIZE)
          {
            P = P*lambda/static_cast<double> (tableidx);
            t[tableidx] = t[tableidx-1] + P;
            /* Make sure we converge to 1.0 just in case u is uniform
             * on [0,1] rather than [0,1). */
            if (t[tableidx] == t[tableidx-1]) t[tableidx] = 1.0;
            tableidx++;
            if (u <= t[tableidx-1]) break;
          }

        /* We are assuming that the table size is big enough here.
         * This should be true even if rand_uniform is returning values in
         * the range [0,1] rather than [0,1). */
        p[i] = static_cast<T> (tableidx-1);
      }
  }

  /* From Press, et al., Numerical Recipes */
  template <typename T>
  static void
  poisson_rejection (double lambda, T *p, std::size_t n)
  {
    double sq = std::sqrt (2.0*lambda);
    double alxm = std::log (lambda);
    double g = lambda*alxm - xlgamma (lambda+1.0);
    std::size_t i;

    for (i = 0; i < n; i++)
      {
        double y, em, t;
        do
          {
            do
              {
                y = tan (M_PI*rand_uniform<double> ());
                em = sq * y + lambda;
              } while (em < 0.0);
            em = std::floor (em);
            t = 0.9*(1.0+y*y)*exp (em*alxm-flogfak (em)-g);
          } while (rand_uniform<double> () > t);
        p[i] = em;
      }
  }

  /* The cutoff of L <= 1e8 in the following two functions before using
   * the normal approximation is based on:
   *   > L=1e8; x=floor(linspace(0,2*L,1000));
   *   > max(abs(normal_pdf(x,L,L)-poisson_pdf(x,L)))
   *   ans = 1.1376e-28
   * For L=1e7, the max is around 1e-9, which is within the step size of
   * rand_uniform.  For L>1e10 the pprsc function breaks down, as I saw
   * from the histogram of a large sample, so 1e8 is both small enough
   * and large enough. */

  /* Generate a set of poisson numbers with the same distribution */
  template <typename T> void rand_poisson (T L_arg, octave_idx_type n, T *p)
  {
    double L = L_arg;
    octave_idx_type i;
    if (L < 0.0 || lo_ieee_isinf (L))
      {
        for (i=0; i<n; i++)
          p[i] = numeric_limits<T>::NaN ();
      }
    else if (L <= 10.0)
      {
        poisson_cdf_lookup<T> (L, p, n);
      }
    else if (L <= 1e8)
      {
        for (i=0; i<n; i++)
          p[i] = pprsc (L);
      }
    else
      {
        /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
        const double sqrtL = std::sqrt (L);
        for (i = 0; i < n; i++)
          {
            p[i] = std::floor (rand_normal<T> () * sqrtL + L + 0.5);
            if (p[i] < 0.0)
              p[i] = 0.0; /* will probably never happen */
          }
      }
  }

  template void rand_poisson<double> (double, octave_idx_type, double *);
  template void rand_poisson<float> (float, octave_idx_type, float *);

  /* Generate one poisson variate */
  template <typename T> T rand_poisson (T L_arg)
  {
    double L = L_arg;
    T ret;
    if (L < 0.0) ret = numeric_limits<T>::NaN ();
    else if (L <= 12.0)
      {
        /* From Press, et al. Numerical recipes */
        double g = exp (-L);
        int em = -1;
        double t = 1.0;
        do
          {
            ++em;
            t *= rand_uniform<T> ();
          } while (t > g);
        ret = em;
      }
    else if (L <= 1e8)
      {
        /* numerical recipes */
        poisson_rejection<T> (L, &ret, 1);
      }
    else if (lo_ieee_isinf (L))
      {
        /* FIXME: R uses NaN, but the normal approximation suggests that
         * limit should be Inf.  Which is correct? */
        ret = numeric_limits<T>::NaN ();
      }
    else
      {
        /* normal approximation: from Phys. Rev. D (1994) v50 p1284 */
        ret = std::floor (rand_normal<T> () * std::sqrt (L) + L + 0.5);
        if (ret < 0.0) ret = 0.0; /* will probably never happen */
      }
    return ret;
  }

  template OCTAVE_API double rand_poisson<double> (double);
  template OCTAVE_API float rand_poisson<float> (float);
}