view scripts/ode/ode45.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2006-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{t}, @var{y}] =} ode45 (@var{fun}, @var{trange}, @var{init})
## @deftypefnx {} {[@var{t}, @var{y}] =} ode45 (@var{fun}, @var{trange}, @var{init}, @var{ode_opt})
## @deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode45 (@dots{})
## @deftypefnx {} {@var{solution} =} ode45 (@dots{})
## @deftypefnx {} {} ode45 (@dots{})
##
## Solve a set of non-stiff Ordinary Differential Equations (non-stiff ODEs)
## with the well known explicit @nospell{Dormand-Prince} method of order 4.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function that defines the ODE: @code{y' = f(t,y)}.  The function
## must accept two inputs where the first is time @var{t} and the second is a
## column vector of unknowns @var{y}.
##
## @var{trange} specifies the time interval over which the ODE will be
## evaluated.  Typically, it is a two-element vector specifying the initial and
## final times (@code{[tinit, tfinal]}).  If there are more than two elements
## then the solution will also be evaluated at these intermediate time
## instances.
##
## By default, @code{ode45} uses an adaptive timestep with the
## @code{integrate_adaptive} algorithm.  The tolerance for the timestep
## computation may be changed by using the options @qcode{"RelTol"} and
## @qcode{"AbsTol"}.
##
## @var{init} contains the initial value for the unknowns.  If it is a row
## vector then the solution @var{y} will be a matrix in which each column is
## the solution for the corresponding initial value in @var{init}.
##
## The optional fourth argument @var{ode_opt} specifies non-default options to
## the ODE solver.  It is a structure generated by @code{odeset}.
##
## The function typically returns two outputs.  Variable @var{t} is a
## column vector and contains the times where the solution was found.  The
## output @var{y} is a matrix in which each column refers to a different
## unknown of the problem and each row corresponds to a time in @var{t}.
##
## The output can also be returned as a structure @var{solution} which has a
## field @var{x} containing a row vector of times where the solution was
## evaluated and a field @var{y} containing the solution matrix such that each
## column corresponds to a time in @var{x}.  Use
## @w{@code{fieldnames (@var{solution})}} to see the other fields and
## additional information returned.
##
## If no output arguments are requested, and no @qcode{"OutputFcn"} is
## specified in @var{ode_opt}, then the @qcode{"OutputFcn"} is set to
## @code{odeplot} and the results of the solver are plotted immediately.
##
## If using the @qcode{"Events"} option then three additional outputs may be
## returned.  @var{te} holds the time when an Event function returned a zero.
## @var{ye} holds the value of the solution at time @var{te}.  @var{ie}
## contains an index indicating which Event function was triggered in the case
## of multiple Event functions.
##
## Example: Solve the @nospell{Van der Pol} equation
##
## @example
## @group
## fvdp = @@(@var{t},@var{y}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
## [@var{t},@var{y}] = ode45 (fvdp, [0, 20], [2, 0]);
## @end group
## @end example
## @seealso{odeset, odeget, ode23, ode15s}
## @end deftypefn

function varargout = ode45 (fun, trange, init, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  solver = "ode45";
  order  = 5;  # runge_kutta_45_dorpri uses local extrapolation

  if (nargin >= 4)
    if (! isstruct (varargin{1}))
      ## varargin{1:len} are parameters for fun
      odeopts = odeset ();
      funarguments = varargin;
    elseif (numel (varargin) > 1)
      ## varargin{1} is an ODE options structure opt
      odeopts = varargin{1};
      funarguments = {varargin{2:numel (varargin)}};
    else
      ## varargin{1} is an ODE options structure opt
      odeopts = varargin{1};
      funarguments = {};
    endif
  else  # nargin == 3
    odeopts = odeset ();
    funarguments = {};
  endif

  if (! isnumeric (trange) || ! isvector (trange))
    error ("Octave:invalid-input-arg",
           "ode45: TRANGE must be a numeric vector");
  endif

  if (numel (trange) < 2)
    error ("Octave:invalid-input-arg",
           "ode45: TRANGE must contain at least 2 elements");
  elseif (trange(1) == trange(2))
    error ("Octave:invalid-input-arg",
           "ode45: invalid time span, TRANGE(1) == TRANGE(2)");
  else
    direction = sign (trange(2) - trange(1));
  endif
  trange = trange(:);

  if (! isnumeric (init) || ! isvector (init))
    error ("Octave:invalid-input-arg",
           "ode45: INIT must be a numeric vector");
  endif
  init = init(:);

  if (ischar (fun))
    if (! exist (fun))
      error ("Octave:invalid-input-arg",
             ['ode45: function "' fun '" not found']);
    endif
    fun = str2func (fun);
  endif
  if (! is_function_handle (fun))
    error ("Octave:invalid-input-arg",
           "ode45: FUN must be a valid function handle");
  endif

  ## Start preprocessing, have a look which options are set in odeopts,
  ## check if an invalid or unused option is set
  [defaults, classes, attributes] = odedefaults (numel (init),
                                                 trange(1), trange(end));

  ## FIXME: Refine is not correctly implemented yet
  defaults = odeset (defaults, "Refine", 4);

  persistent ode45_ignore_options = ...
    {"BDF", "InitialSlope", "Jacobian", "JPattern",
     "MassSingular", "MaxOrder", "MvPattern", "Vectorized"};

  defaults   = rmfield (defaults, ode45_ignore_options);
  classes    = rmfield (classes, ode45_ignore_options);
  attributes = rmfield (attributes, ode45_ignore_options);

  odeopts = odemergeopts ("ode45", odeopts, defaults, classes, attributes);

  odeopts.funarguments = funarguments;
  odeopts.direction    = direction;

  if (! isempty (odeopts.NonNegative))
    if (isempty (odeopts.Mass))
      odeopts.havenonnegative = true;
    else
      odeopts.havenonnegative = false;
      warning ("Octave:invalid-input-arg",
               ['ode45: option "NonNegative" is ignored', ...
                " when mass matrix is set\n"]);
    endif
  else
    odeopts.havenonnegative = false;
  endif

  if (isempty (odeopts.OutputFcn) && nargout == 0)
    odeopts.OutputFcn = @odeplot;
    odeopts.haveoutputfunction = true;
  else
    odeopts.haveoutputfunction = ! isempty (odeopts.OutputFcn);
  endif

  if (isempty (odeopts.InitialStep))
    odeopts.InitialStep = odeopts.direction * ...
                          starting_stepsize (order, fun, trange(1), init,
                                             odeopts.AbsTol, odeopts.RelTol,
                                             strcmpi (odeopts.NormControl, "on"),
                                             odeopts.funarguments);
  endif

  if (! isempty (odeopts.Mass))
    if (isnumeric (odeopts.Mass))
      havemasshandle = false;
      mass = odeopts.Mass;  # constant mass
    elseif (is_function_handle (odeopts.Mass))
      havemasshandle = true;    # mass defined by a function handle
    else
      error ("Octave:invalid-input-arg",
             'ode45: "Mass" field must be a function handle or square matrix');
    endif
  else  # no mass matrix - create a diag-matrix of ones for mass
    havemasshandle = false;   # mass = diag (ones (length (init), 1), 0);
  endif

  ## Starting the initialization of the core solver ode45

  if (havemasshandle)   # Handle only the dynamic mass matrix,
    if (! strcmp (odeopts.MStateDependence, "none"))
      ### constant mass matrices have already
      mass = @(t,x) odeopts.Mass (t, x, odeopts.funarguments{:});
      fun = @(t,x) mass (t, x, odeopts.funarguments{:}) ...
                   \ fun (t, x, odeopts.funarguments{:});
    else
      mass = @(t) odeopts.Mass (t, odeopts.funarguments{:});
      fun = @(t,x) mass (t, odeopts.funarguments{:}) ...
                   \ fun (t, x, odeopts.funarguments{:});
    endif
  endif

  if (nargout == 1)
    ## Single output requires auto-selected intermediate times,
    ## which is obtained by NOT specifying specific solution times.
    trange = [trange(1); trange(end)];
    odeopts.Refine = [];  # disable Refine when single output requested
  elseif (numel (trange) > 2)
    odeopts.Refine = [];  # disable Refine when specific times requested
  endif

  solution = integrate_adaptive (@runge_kutta_45_dorpri,
                                 order, fun, trange, init, odeopts);

  ## Postprocessing, do whatever when terminating integration algorithm
  if (odeopts.haveoutputfunction)  # Cleanup plotter
    feval (odeopts.OutputFcn, [], [], "done", odeopts.funarguments{:});
  endif
  if (! isempty (odeopts.Events))   # Cleanup event function handling
    ode_event_handler (odeopts.Events, solution.t(end),
                       solution.x(end,:).', "done", odeopts.funarguments{:});
  endif

  ## Print additional information if option Stats is set
  if (strcmpi (odeopts.Stats, "on"))
    nsteps    = solution.cntloop;             # cntloop from 2..end
    nfailed   = solution.cntcycles - nsteps;  # cntcycl from 1..end
    nfevals   = 6 * solution.cntcycles + 1;   # number of ode evaluations
    ndecomps  = 0;  # number of LU decompositions
    npds      = 0;  # number of partial derivatives
    nlinsols  = 0;  # no. of linear systems solutions

    printf ("Number of successful steps: %d\n", nsteps);
    printf ("Number of failed attempts:  %d\n", nfailed);
    printf ("Number of function calls:   %d\n", nfevals);
  endif

  if (nargout == 2)
    varargout{1} = solution.t;      # Time stamps are first output argument
    varargout{2} = solution.x;      # Results are second output argument
  elseif (nargout == 1)
    varargout{1}.x = solution.t.';  # Time stamps saved in field x (row vector)
    varargout{1}.y = solution.x.';  # Results are saved in field y (row vector)
    varargout{1}.solver = solver;   # Solver name is saved in field solver
    if (! isempty (odeopts.Events))
      varargout{1}.xe = solution.event{3};  # Time info when an event occurred
      varargout{1}.ye = solution.event{4};  # Results when an event occurred
      varargout{1}.ie = solution.event{2};  # Index info which event occurred
    endif
    if (strcmpi (odeopts.Stats, "on"))
      varargout{1}.stats = struct ();
      varargout{1}.stats.nsteps   = nsteps;
      varargout{1}.stats.nfailed  = nfailed;
      varargout{1}.stats.nfevals  = nfevals;
      varargout{1}.stats.npds     = npds;
      varargout{1}.stats.ndecomps = ndecomps;
      varargout{1}.stats.nlinsols = nlinsols;
    endif
  elseif (nargout > 2)
    varargout = cell (1,5);
    varargout{1} = solution.t;
    varargout{2} = solution.x;
    if (! isempty (odeopts.Events))
      varargout{3} = solution.event{3};  # Time info when an event occurred
      varargout{4} = solution.event{4};  # Results when an event occurred
      varargout{5} = solution.event{2};  # Index info which event occurred
    endif
  endif

endfunction


%!demo
%! ## Demonstrate convergence order for ode45
%! tol = 1e-5 ./ 10.^[0:8];
%! for i = 1 : numel (tol)
%!   opt = odeset ("RelTol", tol(i), "AbsTol", realmin);
%!   [t, y] = ode45 (@(t, y) -y, [0, 1], 1, opt);
%!   h(i) = 1 / (numel (t) - 1);
%!   err(i) = norm (y .* exp (t) - 1, Inf);
%! endfor
%!
%! ## Estimate order visually
%! loglog (h, tol, "-ob",
%!         h, err, "-b",
%!         h, (h/h(end)) .^ 4 .* tol(end), "k--",
%!         h, (h/h(end)) .^ 5 .* tol(end), "k-");
%! axis tight
%! xlabel ("h");
%! ylabel ("err(h)");
%! title ("Convergence plot for ode45");
%! legend ("imposed tolerance", "ode45 (relative) error",
%!         "order 4", "order 5", "location", "northwest");
%!
%! ## Estimate order numerically
%! p = diff (log (err)) ./ diff (log (h))

## We are using the Van der Pol equation for all tests.
## Further tests also define a reference solution (computed at high accuracy)
%!function ydot = fpol (t, y, varargin)  # The Van der Pol ODE
%!  ydot = [y(2); (1 - y(1)^2) * y(2) - y(1)];
%!endfunction
%!function ref = fref ()       # The computed reference solution
%!  ref = [0.32331666704577, -1.83297456798624];
%!endfunction
%!function [val, trm, dir] = feve (t, y, varargin)
%!  val = fpol (t, y, varargin{:});  # We use the derivatives
%!  trm = zeros (2,1);            # that's why component 2
%!  dir = ones (2,1);             # does not seem to be exact
%!endfunction
%!function [val, trm, dir] = fevn (t, y, varargin)
%!  val = fpol (t, y, varargin{:});  # We use the derivatives
%!  trm = ones (2,1);             # that's why component 2
%!  dir = ones (2,1);             # does not seem to be exact
%!endfunction
%!function mas = fmas (t, y, varargin)
%!  mas = [1, 0; 0, 1];           # Dummy mass matrix for tests
%!endfunction
%!function mas = fmsa (t, y, varargin)
%!  mas = sparse ([1, 0; 0, 1]);  # A sparse dummy matrix
%!endfunction
%!function out = fout (t, y, flag, varargin)
%!  out = false;
%!  if (strcmp (flag, "init"))
%!    if (! isequal (size (t), [2, 1]))
%!      error ('fout: step "init"');
%!    endif
%!  elseif (isempty (flag))
%!    if (! isequal (size (t), [1, 1]))
%!      error ('fout: step "calc"');
%!    endif
%!  elseif (strcmp (flag, "done"))
%!    if (! isempty (t))
%!      warning ('fout: step "done"');
%!    endif
%!  else
%!    error ("fout: invalid flag <%s>", flag);
%!  endif
%!endfunction
%!
%!test  # two output arguments
%! [t, y] = ode45 (@fpol, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # not too many steps
%! [t, y] = ode45 (@fpol, [0 2], [2 0]);
%! assert (size (t) < 20);
%!test  # anonymous function instead of real function
%! fvdp = @(t,y) [y(2); (1 - y(1)^2) * y(2) - y(1)];
%! [t, y] = ode45 (fvdp, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # string instead of function
%! [t, y] = ode45 ("fpol", [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # extra input arguments passed through
%! [t, y] = ode45 (@fpol, [0 2], [2 0], 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # empty ODEOPT structure *but* extra input arguments
%! opt = odeset;
%! [t, y] = ode45 (@fpol, [0 2], [2 0], opt, 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # Solve another anonymous function below zero
%! vref = [0, 14.77810590694212];
%! [t, y] = ode45 (@(t,y) y, [-2 0], 2);
%! assert ([t(end), y(end,:)], vref, 1e-1);
%!test  # InitialStep option
%! opt = odeset ("InitialStep", 1e-8);
%! [t, y] = ode45 (@fpol, [0 0.2], [2 0], opt);
%! assert ([t(2)-t(1)], [1e-8], 1e-9);
%!test  # MaxStep option
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode45 (@fpol, [0 0.2], [2 0], opt);
%! assert ([sol.x(5)-sol.x(4)], [1e-3], 1e-3);
%!test  # Solve with intermediate step
%! [t, y] = ode45 (@fpol, [0 1 2], [2 0]);
%! assert (any ((t-1) == 0));
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # Solve in backward direction starting at t=0
%! vref = [-1.205364552835178, 0.951542399860817];
%! sol = ode45 (@fpol, [0 -2], [2 0]);
%! assert ([sol.x(end); sol.y(:,end)], [-2; vref'], 1e-2);
%!test  # Solve in backward direction starting at t=2
%! vref = [-1.205364552835178, 0.951542399860817];
%! sol = ode45 (@fpol, [2 -2], fref);
%! assert ([sol.x(end); sol.y(:,end)], [-2; vref'], 1e-2);
%!test  # Solve in backward direction starting at t=2, with intermediate step
%! vref = [-1.205364552835178, 0.951542399860817];
%! [t, y] = ode45 (@fpol, [2 0 -2], fref);
%! idx = find (y < 0, 1, "first") - 1;
%! assert ([t(idx), y(idx,:)], [0,2,0], 1e-2);
%! assert ([t(end), y(end,:)], [-2, vref], 1e-2);
%!test  # Solve another anonymous function in backward direction
%! vref = [-1, 0.367879437558975];
%! sol = ode45 (@(t,y) y, [0 -1], 1);
%! assert ([sol.x(end); sol.y(:,end)], vref', 1e-3);
%!test  # Solve another anonymous function below zero
%! vref = [0, 14.77810590694212];
%! sol = ode45 (@(t,y) y, [-2 0], 2);
%! assert ([sol.x(end); sol.y(:,end)], vref', 1e-3);
%!test  # Solve in backward direction starting at t=0 with MaxStep option
%! vref = [-1.205364552835178, 0.951542399860817];
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode45 (@fpol, [0 -2], [2 0], opt);
%! assert ([abs(sol.x(8)-sol.x(7))], [1e-3], 1e-3);
%! assert ([sol.x(end); sol.y(:,end)], [-2; vref'], 1e-3);
%!test  # AbsTol option
%! opt = odeset ("AbsTol", 1e-5);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # AbsTol and RelTol option
%! opt = odeset ("AbsTol", 1e-8, "RelTol", 1e-8);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # RelTol and NormControl option -- higher accuracy
%! opt = odeset ("RelTol", 1e-8, "NormControl", "on");
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-5);
%!test  # Keeps initial values while integrating
%! opt = odeset ("NonNegative", 2);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; 2; 0], 0.5);
%!test  # Details of OutputSel and Refine can't be tested
%! opt = odeset ("OutputFcn", @fout, "OutputSel", 1, "Refine", 5);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%!test  # Stats must add further elements in sol
%! opt = odeset ("Stats", "on");
%! stat_str = evalc ("sol = ode45 (@fpol, [0 2], [2 0], opt);");
%! assert (strncmp (stat_str, "Number of successful steps:", 27));
%! assert (isfield (sol, "stats"));
%! assert (isfield (sol.stats, "nsteps"));
%!test  # Events option add further elements in sol
%! opt = odeset ("Events", @feve);
%! sol = ode45 (@fpol, [0 10], [2 0], opt);
%! assert (isfield (sol, "ie"));
%! assert (sol.ie(1), 2);
%! assert (isfield (sol, "xe"));
%! assert (isfield (sol, "ye"));
%!test  # Events option, now stop integration
%! warning ("off", "integrate_adaptive:unexpected_termination", "local");
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! sol = ode45 (@fpol, [0 10], [2 0], opt);
%! assert ([sol.ie, sol.xe, sol.ye],
%!         [2.0, 2.496110, -0.830550, -2.677589], 6e-1);
%!test  # Events option, five output arguments
%! warning ("off", "integrate_adaptive:unexpected_termination", "local");
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! [t, y, vxe, ye, vie] = ode45 (@fpol, [0 10], [2 0], opt);
%! assert ([vie, vxe, ye],
%!         [2.0, 2.496110, -0.830550, -2.677589], 6e-1);
%!test  # Mass option as function
%! opt = odeset ("Mass", @fmas);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as matrix
%! opt = odeset ("Mass", eye (2,2));
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as sparse matrix
%! opt = odeset ("Mass", sparse (eye (2,2)));
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as function and sparse matrix
%! opt = odeset ("Mass", @fmsa);
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as function and MStateDependence
%! opt = odeset ("Mass", @fmas, "MStateDependence", "strong");
%! sol = ode45 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);

## Note: The following options have no effect on this solver
##       therefore it makes no sense to test them here:
##
## "BDF"
## "InitialSlope"
## "JPattern"
## "Jacobian"
## "MassSingular"
## "MaxOrder"
## "MvPattern"
## "Vectorized"

%!test # Check that imaginary part of solution does not get inverted
%! sol = ode45 (@(x,y) 1, [0 1], 1i);
%! assert (imag (sol.y), ones (size (sol.y)));
%! [x, y] = ode45 (@(x,y) 1, [0 1], 1i);
%! assert (imag (y), ones (size (y)));

%!error <Invalid call> ode45 ()
%!error <Invalid call> ode45 (1)
%!error <Invalid call> ode45 (1,2)
%!error <TRANGE must be a numeric> ode45 (@fpol, {[0 25]}, [3 15 1])
%!error <TRANGE must be a .* vector> ode45 (@fpol, [0 25; 25 0], [3 15 1])
%!error <TRANGE must contain at least 2 elements> ode45 (@fpol, [1], [3 15 1])
%!error <invalid time span> ode45 (@fpol, [1 1], [3 15 1])
%!error <INIT must be a numeric> ode45 (@fpol, [0 25], {[3 15 1]})
%!error <INIT must be a .* vector> ode45 (@fpol, [0 25], [3 15 1; 3 15 1])
%!error <FUN must be a valid function handle> ode45 (1, [0 25], [3 15 1])