view scripts/optimization/fminbnd.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 363fb10055df
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b})
## @deftypefnx {} {@var{x} =} fminbnd (@var{fun}, @var{a}, @var{b}, @var{options})
## @deftypefnx {} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fminbnd (@dots{})
## Find a minimum point of a univariate function.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## The starting interval is specified by @var{a} (left boundary) and @var{b}
## (right boundary).  The endpoints must be finite.
##
## @var{options} is a structure specifying additional parameters which
## control the algorithm.  Currently, @code{fminbnd} recognizes these options:
## @qcode{"Display"}, @qcode{"FunValCheck"}, @qcode{"MaxFunEvals"},
## @qcode{"MaxIter"}, @qcode{"OutputFcn"}, @qcode{"TolX"}.
##
## @qcode{"MaxFunEvals"} proscribes the maximum number of function evaluations
## before optimization is halted.  The default value is 500.
## The value must be a positive integer.
##
## @qcode{"MaxIter"} proscribes the maximum number of algorithm iterations
## before optimization is halted.  The default value is 500.
## The value must be a positive integer.
##
## @qcode{"TolX"} specifies the termination tolerance for the solution @var{x}.
## The default is @code{1e-4}.
##
## For a description of the other options,
## @pxref{XREFoptimset,,@code{optimset}}.
## To initialize an options structure with default values for @code{fminbnd}
## use @code{options = optimset ("fminbnd")}.
##
## On exit, the function returns @var{x}, the approximate minimum point, and
## @var{fval}, the function evaluated @var{x}.
##
## The third output @var{info} reports whether the algorithm succeeded and may
## take one of the following values:
##
## @itemize
## @item 1
## The algorithm converged to a solution.
##
## @item 0
## Iteration limit (either @code{MaxIter} or @code{MaxFunEvals}) exceeded.
##
## @item -1
## The algorithm was terminated by a user @code{OutputFcn}.
## @end itemize
##
## Programming Notes: The search for a minimum is restricted to be in the
## finite interval bound by @var{a} and @var{b}.  If you have only one initial
## point to begin searching from then you will need to use an unconstrained
## minimization algorithm such as @code{fminunc} or @code{fminsearch}.
## @code{fminbnd} internally uses a Golden Section search strategy.
## @seealso{fzero, fminunc, fminsearch, optimset}
## @end deftypefn

## This is patterned after opt/fmin.f from Netlib, which in turn is taken from
## Richard Brent: Algorithms For Minimization Without Derivatives,
## Prentice-Hall (1973)

## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup.
## PKG_ADD: [~] = __all_opts__ ("fminbnd");

function [x, fval, info, output] = fminbnd (fun, a, b, options = struct ())

  ## Get default options if requested.
  if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults"))
    x = struct ("Display", "notify", "FunValCheck", "off",
                "MaxFunEvals", 500, "MaxIter", 500,
                "OutputFcn", [], "TolX", 1e-4);
    return;
  endif

  if (nargin < 2)
    print_usage ();
  endif

  if (a > b)
    error ("Octave:invalid-input-arg",
           "fminbnd: the lower bound cannot be greater than the upper one");
  endif

  if (ischar (fun))
    fun = str2func (fun);
  endif

  displ = optimget (options, "Display", "notify");
  funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on");
  outfcn = optimget (options, "OutputFcn");
  tolx = optimget (options, "TolX", 1e-4);
  maxiter = optimget (options, "MaxIter", 500);
  maxfev = optimget (options, "MaxFunEvals", 500);

  if (funvalchk)
    ## Replace fun with a guarded version.
    fun = @(x) guarded_eval (fun, x);
  endif

  ## The default exit flag if exceeded number of iterations.
  info = 0;
  niter = 0;
  nfev = 0;

  c = 0.5*(3 - sqrt (5));
  v = a + c*(b-a);
  w = x = v;
  e = 0;
  fv = fw = fval = fun (x);
  nfev += 1;

  if (isa (a, "single") || isa (b, "single") || isa (fval, "single"))
    sqrteps = eps ("single");
  else
    sqrteps = eps ("double");
  endif

  ## Only for display purposes.
  iter(1).funccount = nfev;
  iter(1).x = x;
  iter(1).fx = fval;

  while (niter < maxiter && nfev < maxfev)
    xm = 0.5*(a+b);
    ## FIXME: the golden section search can actually get closer than sqrt(eps)
    ## sometimes.  Sometimes not, it depends on the function.  This is the
    ## strategy from the Netlib code.  Something smarter would be good.
    tol = 2 * sqrteps * abs (x) + tolx / 3;
    if (abs (x - xm) <= (2*tol - 0.5*(b-a)))
      info = 1;
      break;
    endif

    if (abs (e) > tol)
      dogs = false;
      ## Try inverse parabolic step.
      iter(niter+1).procedure = "parabolic";

      r = (x - w)*(fval - fv);
      q = (x - v)*(fval - fw);
      p = (x - v)*q - (x - w)*r;
      q = 2*(q - r);
      p *= -sign (q);
      q = abs (q);
      r = e;
      e = d;

      if (abs (p) < abs (0.5*q*r) && p > q*(a-x) && p < q*(b-x))
        ## The parabolic step is acceptable.
        d = p / q;
        u = x + d;

        ## f must not be evaluated too close to ax or bx.
        if (min (u-a, b-u) < 2*tol)
          d = tol * (sign (xm - x) + (xm == x));
        endif
      else
        dogs = true;
      endif
    else
      dogs = true;
    endif
    if (dogs)
      ## Default to golden section step.

      ## WARNING: This is also the "initial" procedure following MATLAB
      ## nomenclature.  After the loop we'll fix the string for the first step.
      iter(niter+1).procedure = "golden";

      e = ifelse (x >= xm, a - x, b - x);
      d = c * e;
    endif

    ## f must not be evaluated too close to x.
    u = x + max (abs (d), tol) * (sign (d) + (d == 0));
    fu = fun (u);

    niter += 1;

    iter(niter).funccount = nfev++;
    iter(niter).x = u;
    iter(niter).fx = fu;

    ## update a, b, v, w, and x

    if (fu < fval)
      if (u < x)
        b = x;
      else
        a = x;
      endif
      v = w; fv = fw;
      w = x; fw = fval;
      x = u; fval = fu;
    else
      ## The following if-statement was originally executed even if fu == fval.
      if (u < x)
        a = u;
      else
        b = u;
      endif
      if (fu <= fw || w == x)
        v = w; fv = fw;
        w = u; fw = fu;
      elseif (fu <= fv || v == x || v == w)
        v = u;
        fv = fu;
      endif
    endif

    ## If there's an output function, use it now.
    if (! isempty (outfcn))
      optv.funccount = nfev;
      optv.fval = fval;
      optv.iteration = niter;
      if (outfcn (x, optv, "iter"))
        info = -1;
        break;
      endif
    endif
  endwhile

  ## Fix the first step procedure.
  iter(1).procedure = "initial";

  ## Handle the "Display" option
  switch (displ)
    case "iter"
      print_formatted_table (iter);
      print_exit_msg (info, struct ("TolX", tolx, "fx", fval));
    case "notify"
      if (info == 0)
        print_exit_msg (info, struct ("fx",fval));
      endif
    case "final"
      print_exit_msg (info, struct ("TolX", tolx, "fx", fval));
    case "off"
      "skip";
    otherwise
      warning ("fminbnd: unknown option for Display: '%s'", displ);
  endswitch

  output.iterations = niter;
  output.funcCount = nfev;
  output.algorithm = "golden section search, parabolic interpolation";
  output.bracket = [a, b];
  ## FIXME: bracketf possibly unavailable.

endfunction

## A helper function that evaluates a function and checks for bad results.
function fx = guarded_eval (fun, x)

  fx = fun (x);
  fx = fx(1);
  if (! isreal (fx))
    error ("Octave:fmindbnd:notreal", "fminbnd: non-real value encountered");
  elseif (isnan (fx))
    error ("Octave:fmindbnd:isnan", "fminbnd: NaN value encountered");
  endif

endfunction

## A hack for printing a formatted table
function print_formatted_table (table)
  printf ("\n Func-count     x          f(x)         Procedure\n");
  for row=table
    printf ("%5.5s        %7.7s    %8.8s\t%s\n",
            int2str (row.funccount), num2str (row.x,"%.5f"),
            num2str (row.fx,"%.6f"), row.procedure);
  endfor
  printf ("\n");
endfunction

## Print either a success termination message or bad news
function print_exit_msg (info, opt=struct ())

  printf ("");
  switch (info)
    case 1
      printf ("Optimization terminated:\n");
      printf (" the current x satisfies the termination criteria using OPTIONS.TolX of %e\n", opt.TolX);
    case 0
      printf ("Exiting: Maximum number of iterations has been exceeded\n");
      printf ("         - increase MaxIter option.\n");
      printf ("         Current function value: %.6f\n", opt.fx);
    case -1
      "FIXME"; # FIXME: what's the message MATLAB prints for this case?
    otherwise
      error ("fminbnd: internal error, info return code was %d", info);
  endswitch
  printf ("\n");

endfunction


%!shared opt0
%! opt0 = optimset ("tolx", 0);
%!assert (fminbnd (@cos, pi/2, 3*pi/2, opt0), pi, 10*sqrt (eps))
%!assert (fminbnd (@(x) (x - 1e-3)^4, -1, 1, opt0), 1e-3, 10e-3*sqrt (eps))
%!assert (fminbnd (@(x) abs (x-1e7), 0, 1e10, opt0), 1e7, 10e7*sqrt (eps))
%!assert (fminbnd (@(x) x^2 + sin (2*pi*x), 0.4, 1, opt0), fzero (@(x) 2*x + 2*pi*cos (2*pi*x), [0.4, 1], opt0), sqrt (eps))
%!assert (fminbnd (@(x) x > 0.3, 0, 1) < 0.3)
%!assert (fminbnd (@(x) sin (x), 0, 0), 0, eps)

%!error <lower bound cannot be greater> fminbnd (@(x) sin (x), 0, -pi)