view scripts/plot/draw/fplot.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2005-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} fplot (@var{fn})
## @deftypefnx {} {} fplot (@var{fn}, @var{limits})
## @deftypefnx {} {} fplot (@dots{}, @var{tol})
## @deftypefnx {} {} fplot (@dots{}, @var{n})
## @deftypefnx {} {} fplot (@dots{}, @var{fmt})
## @deftypefnx {} {} fplot (@dots{}, @var{property}, @var{value}, @dots{})
## @deftypefnx {} {} fplot (@var{hax}, @dots{})
## @deftypefnx {} {[@var{x}, @var{y}] =} fplot (@dots{})
## Plot a function @var{fn} within the range defined by @var{limits}.
##
## @var{fn} is a function handle, inline function, or string containing the
## name of the function to evaluate.
##
## The limits of the plot are of the form @w{@code{[@var{xlo}, @var{xhi}]}} or
## @w{@code{[@var{xlo}, @var{xhi}, @var{ylo}, @var{yhi}]}}.  If no limits
## are specified the default is @code{[-5, 5]}.
##
## The next three arguments are all optional and any number of them may be
## given in any order.
##
## @var{tol} is the relative tolerance to use for the plot and defaults
## to 2e-3 (.2%).
##
## @var{n} is the minimum number of points to use.  When @var{n} is specified,
## the maximum stepsize will be @code{(@var{xhi} - @var{xlo}) / @var{n}}.  More
## than @var{n} points may still be used in order to meet the relative
## tolerance requirement.
##
## The @var{fmt} argument specifies the linestyle to be used by the plot
## command.
##
## Multiple property-value pairs may also be specified, but they must appear
## in pairs.  These arguments are applied to the line objects drawn by
## @code{plot}.
##
## The full list of line properties is documented at
## @ref{Line Properties}.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## With no output arguments, the results are immediately plotted.  With two
## output arguments, the 2-D plot data is returned.  The data can subsequently
## be plotted manually with @code{plot (@var{x}, @var{y})}.
##
## Example:
##
## @example
## @group
## fplot (@@cos, [0, 2*pi])
## fplot ("[cos(x), sin(x)]", [0, 2*pi])
## @end group
## @end example
##
## Programming Notes:
##
## @code{fplot} works best with continuous functions.  Functions with
## discontinuities are unlikely to plot well.  This restriction may be removed
## in the future.
##
## @code{fplot} performance is better when the function accepts and returns a
## vector argument.  Consider this when writing user-defined functions and use
## element-by-element operators such as @code{.*}, @code{./}, etc.
##
## @seealso{ezplot, plot}
## @end deftypefn

function [X, Y] = fplot (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("fplot", varargin{:});

  if (nargin < 1 || nargin > 5)
    print_usage ();
  endif

  fn = varargin{1};
  if (isa (fn, "inline"))
    fn = vectorize (inline (fn));
    nam = formula (fn);
  elseif (is_function_handle (fn))
    nam = func2str (fn);
  elseif (all (isalnum (fn)))
    nam = fn;
  elseif (ischar (fn))
    fn = vectorize (inline (fn));
    nam = formula (fn);
  else
    error ("fplot: FN must be a function handle, inline function, or string");
  endif

  if (nargin > 1 && isnumeric (varargin{2}))
    limits = varargin{2};
    if (iscomplex (limits) || (numel (limits) != 2 && numel (limits) != 4))
      error ("fplot: LIMITS must be a real vector with 2 or 4 elements");
    endif
    i = 3;
  else
    limits = [-5, 5];
    i = 2;
  endif

  n = 5;
  tol = 2e-3;
  fmt = {};
  prop_vals = {};
  while (i <= numel (varargin))
    arg = varargin{i};
    if (ischar (arg))
      [~, valid_fmt] = __pltopt__ ("fplot", arg, false);
      if (valid_fmt)
        fmt(end+1) = arg;
      else
        if (i == numel (varargin))
          error ("fplot: bad input in position %d", i);
        endif
        prop_vals(end+(1:2)) = varargin([i, i+1]);
        i++;  # Skip PROPERTY.
      endif
    elseif (isnumeric (arg) && isscalar (arg) && arg > 0)
      if (arg == fix (arg))
        n = arg;
      else
        tol = arg;
      endif
    else
      error ("fplot: bad input in position %d", i);
    endif
    i++;
  endwhile

  if (n != 5)
    ## n was specified
    x0 = linspace (limits(1), limits(2), n/2 + 1)';
  else
    x0 = linspace (limits(1), limits(2), 5)';
    n = 8;
  endif

  try
    y0 = feval (fn, x0);
    if (isscalar (y0))
      warning ("fplot: FN is not a vectorized function which reduces performance");
      fn = @(x) arrayfun (fn, x);  # Create a new fn that accepts vectors
      y0 = feval (fn, x0);
    endif
  catch
    ## feval failed, maybe it is because the function is not vectorized?
    fn = @(x) arrayfun (fn, x);  # Create a new fn that accepts vectors
    y0 = feval (fn, x0);
    warning ("fplot: FN is not a vectorized function which reduces performance");
  end_try_catch

  x = linspace (limits(1), limits(2), n)';
  y = feval (fn, x);

  if (rows (x0) == rows (y0))
    fcn_transpose = false;
  elseif (rows (x0) == columns (y0))
    fcn_transpose = true;
    y0 = y0.';
    y = y.';
  else
    error ("fplot: invalid function FN (# of outputs not equal to inputs)");
  endif

  err0 = Inf;

  ## FIXME: This algorithm should really use adaptive scaling as
  ##        the numerical quadrature algorithms do so that extra points are
  ##        used where they are needed and not spread evenly over the entire
  ##        x-range.  Try any function with a discontinuity, such as
  ##        fplot (@tan, [-2, 2]) or fplot ("1./x", [-3, 2]), to see the
  ##        problems with the current solution.

  while (n < 2^18)    # Something is wrong if we need more than 250K points
    yi = interp1 (x0, y0, x, "linear");
    ## relative error calculation using average of [yi,y] as reference
    ## since neither estimate is known a priori to be better than the other.
    err = 0.5 * max (abs ((yi - y) ./ (yi + y + eps))(:));
    if (err < tol || abs (err - err0) < tol/2)
      ## Either relative tolerance has been met OR
      ## algorithm has stopped making any reasonable progress per iteration.
      break;
    endif
    x0 = x;
    y0 = y;
    err0 = err;
    n = 2 * (n - 1) + 1;
    x = linspace (limits(1), limits(2), n)';
    y = feval (fn, x);
    if (fcn_transpose)
      y = y.';
    endif
  endwhile

  if (nargout == 2)
    X = x;
    Y = y;
  else
    if (isempty (hax))
      hax = gca ();
    endif
    hl = plot (hax, x, y, fmt{:});
    if (isempty (get (hl(1), "displayname")))
      ## Set displayname for legend if FMT did not contain a name.
      if (isvector (y))
        set (hl, "displayname", nam);
      else
        for i = 1:columns (y)
          nams{i} = sprintf ("%s(:,%i)", nam, i);
        endfor
        set (hl, {"displayname"}, nams(:));
      endif
    endif
    ## Properties passed as input arguments override other properties.
    if (! isempty (prop_vals))
      set (hl, prop_vals{:});
    endif
    axis (hax, limits);
    legend (hax, "show");
  endif

endfunction


%!demo
%! clf;
%! fplot (@cos, [0, 2*pi]);
%! title ("fplot() single function");

%!demo
%! clf;
%! fplot ("[cos(x), sin(x)]", [0, 2*pi]);
%! title ("fplot() multiple functions");

%!demo
%! clf;
%! fh = @(x) sin (pi*x) ./ (pi*x);
%! fplot (fh, [-5, 5]);
%! title ("fplot() sinc function (possible division by 0, near 0)");

%!test
%! ## Multi-valued function
%! [x, y] = fplot ("[cos(x), sin(x)]", [0, 2*pi]);
%! assert (columns (y) == 2);
%! assert (rows (x) == rows (y));
%! assert (y, [cos(x), sin(x)], -2e-3);

%!test
%! ## Function requiring transpose
%! fn = @(x) 2 * x(:).';
%! [x, y] = fplot (fn, [-1, 1]);
%! assert (columns (y) == 1);
%! assert (rows (x) == rows (y));
%! assert (y, 2*x);

%!test
%! ## Constant value function
%! fn = @(x) 0;
%! [x, y] = fplot (fn, [-1, 1]);
%! assert (columns (y) == 1);
%! assert (rows (x) == rows (y));
%! assert (y, repmat ([0], size (x)));

%!test <*59274>
%! ## Manual displayname overrides automatic legend entry
%! hf = figure ("visible", "off");
%! unwind_protect
%!   fplot (@sin, [0, 3], "displayname", "mysin");
%!   hl = legend ();
%!   assert (get (hl, "string"), {"mysin"});
%! unwind_protect_cleanup
%!   close (hf);
%! end_unwind_protect

%!test <*59274>
%! ## displayname in format string overrides automatic legend entry
%! hf = figure ("visible", "off");
%! unwind_protect
%!   fplot (@sin, [0, 3], "+;mysin;");
%!   hl = legend ();
%!   assert (get (hl, "string"), {"mysin"});
%! unwind_protect_cleanup
%!   close (hf);
%! end_unwind_protect

## Test input validation
%!error <Invalid call> fplot ()
%!error <Invalid call> fplot (1,2,3,4,5,6)
%!error <FN must be a function handle> fplot (1, [0 1])
%!error <LIMITS must be a real vector> fplot (@cos, [i, 2*i])
%!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1])
%!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1 2 3])
%!error <bad input in position 2> fplot (@cos, "linewidth")
%!error <bad input in position 3> fplot (@cos, [-1,1], {1})
%!warning <FN is not a vectorized function>
%! fn = @(x) 0;
%! [x,y] = fplot (fn, [-1,1]);
%!error <invalid function FN>
%! fn = @(x) [x;x];
%! fplot (fn, [-1,1]);