view scripts/plot/draw/streamribbon.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2020-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} streamribbon (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} streamribbon (@var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} streamribbon (@var{xyz}, @var{x}, @var{y}, @var{z}, @var{anlr_spd}, @var{lin_spd})
## @deftypefnx {} {} streamribbon (@var{xyz}, @var{anlr_spd}, @var{lin_spd})
## @deftypefnx {} {} streamribbon (@var{xyz}, @var{anlr_rot})
## @deftypefnx {} {} streamribbon (@dots{}, @var{width})
## @deftypefnx {} {} streamribbon (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} streamribbon (@dots{})
## Calculate and display streamribbons.
##
## The streamribbon is constructed by rotating a normal vector around a
## streamline according to the angular rotation of the vector field.
##
## The vector field is given by @code{[@var{u}, @var{v}, @var{w}]} and is
## defined over a rectangular grid given by @code{[@var{x}, @var{y}, @var{z}]}.
## The streamribbons start at the seed points
## @code{[@var{sx}, @var{sy}, @var{sz}]}.
##
## @code{streamribbon} can be called with a cell array that contains
## pre-computed streamline data.  To do this, @var{xyz} must be created with
## the @code{stream3} function.  @var{lin_spd} is the linear speed of the
## vector field and can be calculated from @code{[@var{u}, @var{v}, @var{w}]}
## by the square root of the sum of the squares.  The angular speed
## @var{anlr_spd} is the projection of the angular velocity onto the velocity
## of the normalized vector field and can be calculated with the @code{curl}
## command.  This option is useful if you need to alter the integrator step
## size or the maximum number of streamline vertices.
##
## Alternatively, ribbons can be created from an array of vertices @var{xyz} of
## a path curve.  @var{anlr_rot} contains the angles of rotation around the
## edges between adjacent vertices of the path curve.
##
## The input parameter @var{width} sets the width of the streamribbons.
##
## Streamribbons are colored according to the total angle of rotation along the
## ribbon.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the plot objects
## created for each streamribbon.
##
## Example:
##
## @example
## @group
## [x, y, z] = meshgrid (0:0.2:4, -1:0.2:1, -1:0.2:1);
## u = - x + 10;
## v = 10 * z.*x;
## w = - 10 * y.*x;
## streamribbon (x, y, z, u, v, w, [0, 0], [0, 0.6], [0, 0]);
## view (3);
## @end group
## @end example
##
## @seealso{streamline, stream3, streamtube, ostreamtube}
##
## @end deftypefn

## References:
##
## @inproceedings{
##    title = {Feature Detection from Vector Quantities in a Numerically Simulated Hypersonic Flow Field in Combination with Experimental Flow Visualization},
##    author = {Pagendarm, Hans-Georg and Walter, Birgit},
##    year = {1994},
##    publisher = {IEEE Computer Society Press},
##    booktitle = {Proceedings of the Conference on Visualization ’94},
##    pages = {117–123},
## }
##
## @article{
##    title = {Efficient streamline, streamribbon, and streamtube constructions on unstructured grids},
##    author = {Ueng, Shyh-Kuang and Sikorski, C. and Ma, Kwan-Liu},
##    year = {1996},
##    month = {June},
##    publisher = {IEEE Transactions on Visualization and Computer Graphics},
## }
##
## @inproceedings{
##    title = {Visualization of 3-D vector fields - Variations on a stream},
##    author = {Dave Darmofal and Robert Haimes},
##    year = {1992}
## }
##
## @techreport{
##    title = {Parallel Transport Approach to Curve Framing},
##    author = {Andrew J. Hanson and Hui Ma},
##    year = {1995}
## }
##
## @article{
##    title = {There is More than One Way to Frame a Curve},
##    author = {Bishop, Richard},
##    year = {1975},
##    month = {03},
##    volume = {82},
##    publisher = {The American Mathematical Monthly}
## }

function h = streamribbon (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("streamribbon", varargin{:});

  width = [];
  xyz = [];
  anlr_spd = [];
  lin_spd = [];
  anlr_rot = [];
  switch (nargin)
    case 2
      [xyz, anlr_rot] = varargin{:};
    case 3
      if (numel (varargin{3}) == 1)
        [xyz, anlr_rot, width] = varargin{:};
      else
        [xyz, anlr_spd, lin_spd] = varargin{:};
        [m, n, p] = size (anlr_spd);
        [x, y, z] = meshgrid (1:n, 1:m, 1:p);
      endif
    case 4
      [xyz, anlr_spd, lin_spd, width] = varargin{:};
      [m, n, p] = size (anlr_spd);
      [x, y, z] = meshgrid (1:n, 1:m, 1:p);
    case 6
      if (iscell (varargin{1}))
        [xyz, x, y, z, anlr_spd, lin_spd] = varargin{:};
      else
        [u, v, w, spx, spy, spz] = varargin{:};
        [m, n, p] = size (u);
        [x, y, z] = meshgrid (1:n, 1:m, 1:p);
      endif
    case 7
      if (iscell (varargin{1}))
        [xyz, x, y, z, anlr_spd, lin_spd, width] = varargin{:};
      else
        [u, v, w, spx, spy, spz, width] = varargin{:};
        [m, n, p] = size (u);
        [x, y, z] = meshgrid (1:n, 1:m, 1:p);
      endif
    case 9
      [x, y, z, u, v, w, spx, spy, spz] = varargin{:};
    case 10
      [x, y, z, u, v, w, spx, spy, spz, width] = varargin{:};
    otherwise
      print_usage ();
  endswitch

  if (isempty (xyz))
    xyz = stream3 (x, y, z, u, v, w, spx, spy, spz);
    anlr_spd = curl (x, y, z, u, v, w);
    lin_spd = sqrt (u.*u + v.*v + w.*w);
  endif

  ## Derive scale factor from the bounding box diagonal
  if (isempty (width))
    mxx = mnx = mxy = mny = mxz = mnz = [];
    j = 1;
    for i = 1 : length (xyz)
      sl = xyz{i};
      if (! isempty (sl))
        slx = sl(:,1); sly = sl(:,2); slz = sl(:,3);
        mxx(j) = max (slx); mnx(j) = min (slx);
        mxy(j) = max (sly); mny(j) = min (sly);
        mxz(j) = max (slz); mnz(j) = min (slz);
        j += 1;
      endif
    endfor
    dx = max (mxx) - min (mnx);
    dy = max (mxy) - min (mny);
    dz = max (mxz) - min (mnz);
    width = sqrt (dx*dx + dy*dy + dz*dz) / 25;
  elseif (! isreal (width) || width <= 0)
    error ("streamribbon: WIDTH must be a real scalar > 0");
  endif

  if (! isempty (anlr_rot))
    for i = 1 : length (xyz)
      if (rows (anlr_rot{i}) != rows (xyz{i}))
        error ("streamribbon: ANLR_ROT must have same length as XYZ");
      endif
    endfor
  endif

  if (isempty (hax))
    hax = gca ();
  else
    hax = hax(1);
  endif

  ## Angular speed of a paddle wheel spinning around a streamline in a fluid
  ## flow "V":
  ## dtheta/dt = 0.5 * <curl(V), V/norm(V)>
  ##
  ## Integration along a streamline segment with the length "h" yields the
  ## rotation angle:
  ## theta = 0.25 * h * <curl(V), V(0)/norm(V(0))^2) + V(h)/norm(V(h))^2)>
  ##
  ## Alternative approach using the curl angular speed "c = curl()":
  ## theta = 0.5 * h * (c(0)/norm(V(0)) + c(h)/norm(V(h)))
  ##
  ## Hints:
  ## i. ) For integration use trapezoidal rule
  ## ii.) "V" can be assumend to be piecewise linear and curl(V) to be
  ##      piecewise constant because of the used linear interpolation

  h = [];
  for i = 1 : length (xyz)
    sl = xyz{i};
    num_vertices = rows (sl);
    if (! isempty (sl) && num_vertices > 1)
      if (isempty (anlr_rot))
        ## Plot from vector field
        ## Interpolate onto streamline vertices
        [lin_spd_sl, anlr_spd_sl, max_vertices] = ...
                                  interp_sl (x, y, z, lin_spd, anlr_spd, sl);
        if (max_vertices > 1)
          ## Euclidean distance between two adjacent vertices
          stepsize = vecnorm (diff (sl(1:max_vertices, :)), 2, 2);
          ## Angular rotation around edges between two adjacent sl-vertices
          ## Note: Potential "division by zero" is checked in interp_sl()
          anlr_rot_sl = 0.5 * stepsize.*(anlr_spd_sl(1:max_vertices - 1)./ ...
                                         lin_spd_sl(1:max_vertices - 1) + ...
                                         anlr_spd_sl(2:max_vertices)./ ...
                                         lin_spd_sl(2:max_vertices));

          htmp = plotribbon (hax, sl, anlr_rot_sl, max_vertices, 0.5 * width);
          h = [h; htmp];
        endif
      else
          ## Plot from vertice array
          anlr_rot_sl = anlr_rot{i};

          htmp = plotribbon (hax, sl, anlr_rot_sl, num_vertices, 0.5 * width);
          h = [h; htmp];
      endif
    endif
  endfor

endfunction

function h = plotribbon (hax, sl, anlr_rot_sl, max_vertices, width2)

  total_angle = cumsum (anlr_rot_sl);
  total_angle = [0; total_angle];

  ## 1st streamline segment
  X0 = sl(1,:);
  X1 = sl(2,:);
  R = X1 - X0;
  RE = R / norm (R);

  ## Initial vector KE which is to be transported along the vertice array
  KE = get_normal2 (RE);
  XS10 = - width2 * KE + X0;
  XS20 = width2 * KE + X0;

  ## Apply angular rotation
  cp = cos (anlr_rot_sl(1));
  sp = sin (anlr_rot_sl(1));
  KE = rotation (KE, RE, cp, sp).';

  XS1 = - width2 * KE + X1;
  XS2 = width2 * KE + X1;

  px = zeros (2, max_vertices);
  py = zeros (2, max_vertices);
  pz = zeros (2, max_vertices);
  pc = zeros (2, max_vertices);

  px(:,1) = [XS10(1); XS20(1)];
  py(:,1) = [XS10(2); XS20(2)];
  pz(:,1) = [XS10(3); XS20(3)];
  pc(:,1) = total_angle(1) * [1; 1];

  px(:,2) = [XS1(1); XS2(1)];
  py(:,2) = [XS1(2); XS2(2)];
  pz(:,2) = [XS1(3); XS2(3)];
  pc(:,2) = total_angle(2) * [1; 1];

  for i = 3 : max_vertices

    ## Next streamline segment
    X0 = X1;
    X1 = sl(i,:);
    R = X1 - X0;
    RE = R / norm (R);

    ## Project KE onto RE and get the difference in order to transport
    ## the normal vector KE along the vertex array
    Kp = KE - RE * dot (KE, RE);
    KE = Kp / norm (Kp);

    ## Apply angular rotation to KE
    cp = cos (anlr_rot_sl(i - 1));
    sp = sin (anlr_rot_sl(i - 1));
    KE = rotation (KE, RE, cp, sp).';

    XS1 = - width2 * KE + X1;
    XS2 = width2 * KE + X1;

    px(:,i) = [XS1(1); XS2(1)];
    py(:,i) = [XS1(2); XS2(2)];
    pz(:,i) = [XS1(3); XS2(3)];
    pc(:,i) = total_angle(i) * [1; 1];

  endfor

  h = surface (hax, px, py, pz, pc);

endfunction

## Interpolate speed and divergence onto the streamline vertices and
## return the first chunck of valid samples until a singularity /
## zero is hit or the streamline vertex array "sl" ends
function [lin_spd_sl, anlr_spd_sl, max_vertices] = ...
                               interp_sl (x, y, z, lin_spd, anlr_spd, sl)

  anlr_spd_sl = interp3 (x, y, z, anlr_spd, sl(:,1), sl(:,2), sl(:,3));
  lin_spd_sl = interp3 (x, y, z, lin_spd, sl(:,1), sl(:,2), sl(:,3));

  is_singular_anlr_spd = find (isnan (anlr_spd_sl), 1, "first");
  is_zero_lin_spd = find (lin_spd_sl == 0, 1, "first");

  max_vertices = rows (sl);
  if (! isempty (is_singular_anlr_spd))
    max_vertices = min (max_vertices, is_singular_anlr_spd - 1);
  endif
  if (! isempty (is_zero_lin_spd))
    max_vertices = min (max_vertices, is_zero_lin_spd - 1);
  endif

endfunction

## N normal to X, so that N is in span ([0 0 1], X)
## If not possible then span ([1 0 0], X)
function N = get_normal2 (X)

  if ((X(1) == 0) && (X(2) == 0))
    A = [1, 0, 0];
  else
    A = [0, 0, 1];
  endif

  ## Project A onto X and get the difference
  N = A - X * dot (A, X) / (norm (X)^2);
  N /= norm (N);

endfunction

## Rotate X around U where |U| = 1
## cp = cos (angle), sp = sin (angle)
function Y = rotation (X, U, cp, sp)

  ux = U(1);
  uy = U(2);
  uz = U(3);

  Y(1,:) = X(1) * (cp + ux * ux * (1 - cp)) + ...
           X(2) * (ux * uy * (1 - cp) - uz * sp) + ...
           X(3) * (ux * uz * (1 - cp) + uy * sp);

  Y(2,:) = X(1) * (uy * ux * (1 - cp) + uz * sp) + ...
           X(2) * (cp + uy * uy * (1 - cp)) + ...
           X(3) * (uy * uz * (1 - cp) - ux * sp);

  Y(3,:) = X(1) * (uz * ux * (1 - cp) - uy * sp) + ...
           X(2) * (uz * uy * (1 - cp) + ux * sp) + ...
           X(3) * (cp + uz * uz * (1 - cp));

endfunction


%!demo
%! clf;
%! [x, y, z] = meshgrid (0:0.2:4, -1:0.2:1, -1:0.2:1);
%! u = - x + 10;
%! v = 10 * z.*x;
%! w = - 10 * y.*x;
%! sx = [0, 0];
%! sy = [0, 0.6];
%! sz = [0, 0];
%! streamribbon (x, y, z, u, v, w, sx, sy, sz);
%! hold on;
%! quiver3 (x, y, z, u, v, w);
%! colormap (jet);
%! shading interp;
%! camlight ("headlight");
%! view (3);
%! axis tight equal off;
%! set (gca, "cameraviewanglemode", "manual");
%! hcb = colorbar;
%! title (hcb, "Angle");
%! title ("Streamribbon");

%!demo
%! clf;
%! t = (0:pi/50:2*pi).';
%! xyz{1} = [cos(t), sin(t), 0*t];
%! twist{1} = ones (numel (t), 1) * pi / (numel (t) - 1);
%! streamribbon (xyz, twist, 0.5);
%! colormap (jet);
%! view (3);
%! camlight ("headlight");
%! axis tight equal off;
%! title ("Moebius Strip");

## Test input validation
%!error <Invalid call> streamribbon ()
%!error <Invalid call> streamribbon (1)
%!error <Invalid call> streamribbon (1,2,3,4,5)
%!error <Invalid call> streamribbon (1,2,3,4,5,6,7,8)
%!error <Invalid call> streamribbon (1,2,3,4,5,6,7,8,9,10,11)
%!error <WIDTH must be a real scalar . 0> streamribbon (1,2,3,1i)
%!error <WIDTH must be a real scalar . 0> streamribbon (1,2,3,0)
%!error <WIDTH must be a real scalar . 0> streamribbon (1,2,3,-1)
%!error <ANLR_ROT must have same length as XYZ> streamribbon ({[1,1,1;2,2,2]},{[1,1,1]})