view scripts/polynomial/polyfit.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 1996-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{p} =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {} {[@var{p}, @var{s}] =} polyfit (@var{x}, @var{y}, @var{n})
## @deftypefnx {} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n})
## Return the coefficients of a polynomial @var{p}(@var{x}) of degree @var{n}
## that minimizes the least-squares-error of the fit to the points
## @code{[@var{x}(:), @var{y}(:)]}.
##
## @var{n} is typically an integer @geq{} 0 specifying the degree of the
## approximating polynomial.  If @var{n} is a logical vector, it is used as a
## mask to selectively force the corresponding polynomial coefficients to be
## used or ignored.
##
## The polynomial coefficients are returned in the row vector @var{p}.  The
## output @var{p} may be directly used with @code{polyval} to estimate values
## using the fitted polynomial.
##
## The optional output @var{s} is a structure containing the following fields:
##
## @table @samp
##
## @item yf
## The values of the polynomial for each value of @var{x}.
##
## @item X
## The @nospell{Vandermonde} matrix used to compute the polynomial
## coefficients.
##
## @item R
## Triangular factor R from the QR@tie{}decomposition.
##
## @item C
## The unscaled covariance matrix, formally equal to the inverse of
## @var{x'}*@var{x}, but computed in a way minimizing roundoff error
## propagation.
##
## @item df
## The degrees of freedom.
##
## @item normr
## The norm of the residuals.
## @end table
##
## The second output may be used by @code{polyval} to calculate the statistical
## error limits of the predicted values.  In particular, the standard deviation
## of @var{p} coefficients is given by
##
## @code{sqrt (diag (@var{s.C})/@var{s.df}) * @var{s.normr}}.
##
## When the third output, @var{mu}, is present the original data is centered
## and scaled which can improve the numerical stability of the fit.  The
## coefficients @var{p} are associated with a polynomial in
##
## @code{@var{xhat} = (@var{x} - @var{mu}(1)) / @var{mu}(2)} @*
## where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}).
##
## Example 1 : logical @var{n} and integer @var{n}
##
## @example
## @group
## f = @@(x) x.^2 + 5;   # data-generating function
## x = 0:5;
## y = f (x);
## ## Fit data to polynomial A*x^3 + B*x^1
## p = polyfit (x, y, logical ([1, 0, 1, 0]))
## @result{} p = [ 0.0680, 0, 4.2444, 0 ]
## ## Fit data to polynomial using all terms up to x^3
## p = polyfit (x, y, 3)
## @result{} p = [ -4.9608e-17, 1.0000e+00, -3.3813e-15, 5.0000e+00 ]
## @end group
## @end example
##
## @seealso{polyval, polyaffine, roots, vander, zscore}
## @end deftypefn

function [p, s, mu] = polyfit (x, y, n)

  if (nargin < 3)
    print_usage ();
  endif

  y_is_row_vector = isrow (y);

  ## Reshape x & y into column vectors.
  x = x(:);
  y = y(:);

  nx = numel (x);
  ny = numel (y);
  if (nx != ny)
    error ("polyfit: X and Y must have the same number of points");
  endif

  if (nargout > 2)
    ## Center and scale the x values.
    mu = [mean(x), std(x)];
    x = (x - mu(1)) / mu(2);
  endif

  ## n is the polynomial degree (an input, or deduced from the polymask size)
  ## m is the effective number of coefficients.
  if (islogical (n))
    polymask = n(:).';          # force to row vector
    n = numel (polymask) - 1;
    m = sum (polymask) - 1;
    pad_output = true;
  else
    if (! (isscalar (n) && n >= 0 && ! isinf (n) && n == fix (n)))
      error ("polyfit: N must be a non-negative integer");
    endif
    polymask = true (1, n+1);
    m = n;
    pad_output = false;
  endif

  if (m >= nx)
    warning ("polyfit: degree of polynomial N is >= number of data points; solution is not unique");
    m = nx;
    pad_output = true;
    ## Keep the lowest m entries in polymask
    idx = find (polymask);
    idx((end-m+1):end) = [];
    polymask(idx) = false;
  endif

  ## Construct the Vandermonde matrix.
  X = vander (x, n+1);
  v = X(:, polymask);

  ## Solve by QR decomposition.
  [q, r, k] = qr (v, 0);
  p = r \ (q' * y);
  p(k) = p;

  if (isargout (2))
    yf = v*p;
    if (y_is_row_vector)
      s.yf = yf.';
    else
      s.yf = yf;
    endif

    s.X = X;

    ## r.'*r is positive definite if matrix v is of full rank.  Invert it by
    ## cholinv to avoid taking the square root of squared quantities.
    ## If cholinv fails, then v is rank deficient and not invertible.
    try
      C = cholinv (r.'*r)(k, k);
    catch
      C = NaN (m, m);
    end_try_catch

    if (pad_output)
      s.X(:, ! polymask) = 0;
      s.R = zeros (rows (r), n+1); s.R(:, polymask) = r;
      s.C = zeros (rows (C), n+1); s.C(:, polymask) = C;
    else
      s.R = r;
      s.C = C;
    endif

    s.df = max (0, nx - m - 1);
    s.normr = norm (yf - y);
  endif

  if (pad_output)
    ## Zero pad output
    q = p;
    p = zeros (n+1, 1);
    p(polymask) = q;
  endif
  p = p.';  # Return a row vector.

endfunction


%!shared x
%! x = [-2, -1, 0, 1, 2];

%!assert (polyfit (x, 3*x.^2 + 2*x + 1, 2), [3, 2, 1], 10*eps)
%!assert (polyfit (x, 3*x.^2 + 2*x + 1, logical ([1 1 1])), [3, 2, 1], 10*eps)
%!assert (polyfit (x, x.^2 + 2*x + 3, 3), [0, 1, 2, 3], 10*eps)
%!assert (polyfit (x, x.^2 + 2*x + 3, logical ([0 1 1 1])), [0 1 2 3], 10*eps)

## Test logical input N
%!test
%! x = [0:5];
%! y = 3*x.^3 + 2*x.^2 + 4;
%! [p, s] = polyfit (x, y, logical ([1, 0, 1, 1]));
%! assert (p(2), 0);
%! assert (all (p([1, 3, 4])));
%! assert (s.df, 3);

## Test difficult case where scaling is really needed.  This example
## demonstrates the rather poor result which occurs when the dependent
## variable is not normalized properly.
## Also check the usage of 2nd & 3rd output arguments.
%!test
%! warning ("off", "Octave:nearly-singular-matrix", "local");
%! x = [ -1196.4, -1195.2, -1194, -1192.8, -1191.6, -1190.4, -1189.2, -1188, ...
%!       -1186.8, -1185.6, -1184.4, -1183.2, -1182];
%! y = [ 315571.7086, 315575.9618, 315579.4195, 315582.6206, 315585.4966, ...
%!       315588.3172, 315590.9326, 315593.5934, 315596.0455, 315598.4201, ...
%!       315600.7143, 315602.9508, 315605.1765 ];
%! [p1, s1] = polyfit (x, y, 10);
%! [p2, s2, mu] = polyfit (x, y, 10);
%! assert (s2.normr < s1.normr);

%!test
%! warning ("off", "Octave:nearly-singular-matrix", "local");
%! x = 1000 + (-5:5);
%! xn = (x - mean (x)) / std (x);
%! pn = ones (1,5);
%! y = polyval (pn, xn);
%! n = numel (pn) - 1;
%! [p, s, mu] = polyfit (x, y, n);
%! [p2, s2] = polyfit (x, y, n);
%! assert (p, pn, s.normr);
%! assert (s.yf, y, s.normr);
%! assert (mu, [mean(x), std(x)]);
%! assert (s.normr/s2.normr < sqrt (eps));

## Complex polynomials
%!test
%! x = 1:4;
%! p0 = [1i, 0, 2i, 4];
%! y = polyval (p0, x);
%! n = numel (p0) - 1;
%! p = polyfit (x, y, n);
%! assert (p, p0, 1000*eps);

## Matrix input
%!test
%! x = [1, 2, 3; 4, 5, 6];
%! y = [0, 0, 1; 1, 0, 0];
%! p = polyfit (x, y, 5);
%! expected = [0, 1, -14, 65, -112, 60] / 12;
%! assert (p, expected, sqrt (eps));

## Orientation of output
%!test
%! x = 0:5;
%! y = x.^4 + 2*x + 5;
%! [p, s] = polyfit (x, y, 3);
%! assert (isrow (s.yf));
%! [p, s] = polyfit (x, y.', 3);
%! assert (iscolumn (s.yf));

## Insufficient data for fit
%!test
%! x = [1, 2];
%! y = [3, 4];
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%!   warning ("off", "all");
%!   p0 = polyfit (x, y, 4);
%!   [p1, s, mu] = polyfit (x, y, 4);
%! unwind_protect_cleanup
%!   warning (wstate);
%! end_unwind_protect
%! assert (p0, [0, 0, 0, 1, 2], 10*eps);
%! assert (p1, [0, 0, 0, sqrt(2)/2, 3.5], 10*eps);
%! assert (size (s.X), [2, 5]);
%! assert (s.X(:,1:3), zeros (2,3));
%! assert (size (s.R), [2, 5]);
%! assert (s.R(:,1:3), zeros (2,3));
%! assert (size (s.C), [2, 5]);
%! assert (s.C(:,1:3), zeros (2,3));
%! assert (s.df, 0);
%! assert (mu, [1.5, sqrt(2)/2]);

%!test
%! x = [1, 2, 3];
%! y = 2*x + 1;
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%!   warning ("off", "all");
%!   p0 = polyfit (x, y, logical ([1, 1, 1, 0 1]));
%!   [p1, s, mu] = polyfit (x, y, logical ([1, 1, 1, 0 1]));
%! unwind_protect_cleanup
%!   warning (wstate);
%! end_unwind_protect
%! assert (p0, [0, -2/11, 12/11, 0, 23/11], 10*eps);
%! assert (p1, [0, 2, 0, 0, 5], 10*eps);
%! assert (size (s.X), [3, 5]);
%! assert (s.X(:,[1,4]), zeros (3,2));
%! assert (size (s.R), [3, 5]);
%! assert (s.R(:,[1,4]), zeros (3,2));
%! assert (size (s.C), [3, 5]);
%! assert (s.C(:,[1,4]), zeros (3,2));
%! assert (s.df, 0);
%! assert (mu, [2, 1]);

%!test <*57964>
%! ## Disable warnings entirely because there is not a specific ID to disable.
%! wstate = warning ();
%! unwind_protect
%!   warning ("off", "all");
%!   [p, s] = polyfit ([1,2], [3,4], 2);
%! unwind_protect_cleanup
%!   warning (wstate);
%! end_unwind_protect
%! assert (size (p), [1, 3]);
%! assert (size (s.X), [2, 3]);
%! assert (s.X(:,1), [0; 0]);
%! assert (size (s.R), [2, 3]);
%! assert (s.R(:,1), [0; 0]);
%! assert (size (s.C), [2, 3]);
%! assert (s.C(:,1), [0; 0]);

## Test input validation
%!error <Invalid call> polyfit ()
%!error <Invalid call> polyfit (1)
%!error <Invalid call> polyfit (1,2)
%!error <X and Y must have the same number of points> polyfit ([1, 2], 1, 1)
%!error <X and Y must have the same number of points> polyfit (1, [1, 2], 1)
%!error <N must be a non-negative integer> polyfit (1, 2, [1,2])
%!error <N must be a non-negative integer> polyfit (1, 2, -1)
%!error <N must be a non-negative integer> polyfit (1, 2, Inf)
%!error <N must be a non-negative integer> polyfit (1, 2, 1.5)
%!test <*57964>
%! fail ("p = polyfit ([1,2], [3,4], 4)", "warning", "solution is not unique");