view scripts/signal/periodogram.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 1995-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{Pxx}, @var{w}] =} periodogram (@var{x})
## @deftypefnx {} {[@var{Pxx}, @var{w}] =} periodogram (@var{x}, @var{win})
## @deftypefnx {} {[@var{Pxx}, @var{w}] =} periodogram (@var{x}, @var{win}, @var{nfft})
## @deftypefnx {} {[@var{Pxx}, @var{f}] =} periodogram (@var{x}, @var{win}, @var{nfft}, @var{Fs})
## @deftypefnx {} {[@var{Pxx}, @var{f}] =} periodogram (@dots{}, "@var{range}")
## @deftypefnx {} {} periodogram (@dots{})
## Return the periodogram (Power Spectral Density) of @var{x}.
##
## The possible inputs are:
##
## @table @var
## @item x
##
## data vector.  If @var{x} is real-valued a one-sided spectrum is estimated.
## If @var{x} is complex-valued, or @qcode{"@var{range}"} specifies
## @qcode{"@nospell{twosided}"}, the full spectrum is estimated.
##
## @item win
## window weight data.  If window is empty or unspecified a default rectangular
## window is used.  Otherwise, the window is applied to the signal
## (@code{@var{x} .* @var{win}}) before computing the periodogram.  The window
## data must be a vector of the same length as @var{x}.
##
## @item nfft
## number of frequency bins.  The default is 256 or the next higher power of
## 2 greater than the length of @var{x}
## (@code{max (256, 2.^nextpow2 (length (x)))}).  If @var{nfft} is greater
## than the length of the input then @var{x} will be zero-padded to the length
## of @var{nfft}.
##
## @item Fs
## sampling rate.  The default is 1.
##
## @item range
## range of spectrum.  @qcode{"@nospell{onesided}"} computes spectrum from
## [0:nfft/2+1].  @qcode{"@nospell{twosided}"} computes spectrum from
## [0:nfft-1].
## @end table
##
## The optional second output @var{w} are the normalized angular frequencies.
## For a one-sided calculation @var{w} is in the range [0, pi] if @var{nfft}
## is even and [0, pi) if @var{nfft} is odd.  Similarly, for a two-sided
## calculation @var{w} is in the range [0, 2*pi] or [0, 2*pi) depending on
## @var{nfft}.
##
## If a sampling frequency is specified, @var{Fs}, then the output frequencies
## @var{f} will be in the range [0, @var{Fs}/2] or [0, @var{Fs}/2) for
## one-sided calculations.  For two-sided calculations the range will be
## [0, @var{Fs}).
##
## When called with no outputs the periodogram is immediately plotted in the
## current figure window.
## @seealso{fft}
## @end deftypefn

function [pxx, f] = periodogram (x, varargin)

  ## check input arguments
  if (nargin < 1 || nargin > 5)
    print_usage ();
  endif

  nfft = fs = range = window = [];
  j = 2;
  for k = 1:length (varargin)
    if (ischar (varargin{k}))
      range = varargin{k};
    else
      switch (j)
        case 2
          window = varargin{k};
        case 3
          nfft   = varargin{k};
        case 4
          fs     = varargin{k};
      endswitch
      j += 1;
    endif
  endfor

  if (! isvector (x))
    error ("periodogram: X must be a real or complex vector");
  endif
  x = x(:);  # Use column vectors from now on

  n = rows (x);

  if (! isempty (window))
    if (! isvector (window) || length (window) != n)
      error ("periodogram: WIN must be a vector of the same length as X");
    endif
    window = window(:);
    x .*= window;
  endif

  if (isempty (nfft))
    nfft = max (256, 2.^nextpow2 (n));
  elseif (! isscalar (nfft))
    error ("periodogram: NFFT must be a scalar");
  endif

  use_w_freq = isempty (fs);
  if (! use_w_freq && ! isscalar (fs))
    error ("periodogram: FS must be a scalar");
  endif

  if (strcmpi (range, "onesided"))
    range = 1;
  elseif (strcmpi (range, "twosided"))
    range = 2;
  elseif (strcmpi (range, "centered"))
    error ('periodogram: "centered" range type is not implemented');
  else
    range = 2-isreal (x);
  endif

  ## compute periodogram

  if (n > nfft)
    Pxx = 0;
    rr = rem (length (x), nfft);
    if (rr)
      x = [x(:); zeros(nfft-rr, 1)];
    endif
    x = sum (reshape (x, nfft, []), 2);
  endif

  if (! isempty (window))
    n = sumsq (window);
  endif
  Pxx = (abs (fft (x, nfft))) .^ 2 / n;

  if (use_w_freq)
    Pxx /= 2*pi;
  else
    Pxx /= fs;
  endif

  ## generate output arguments

  if (range == 1)  # onesided
    if (! rem (nfft,2))  # nfft is even
      psd_len = nfft/2+1;
      Pxx = Pxx(1:psd_len) + [0; Pxx(nfft:-1:psd_len+1); 0];
    else                 # nfft is odd
      psd_len = (nfft+1)/2;
      Pxx = Pxx(1:psd_len) + [0; Pxx(nfft:-1:psd_len+1)];
    endif
  endif

  if (nargout != 1)
    if (range == 1)
      f = (0:nfft/2)' / nfft;
    elseif (range == 2)
      f = (0:nfft-1)' / nfft;
    endif
    if (use_w_freq)
      f *= 2*pi;  # generate w=2*pi*f
    else
      f *= fs;
    endif
  endif

  if (nargout == 0)
    if (use_w_freq)
      plot (f/(2*pi), 10*log10 (Pxx));
      xlabel ("normalized frequency [x pi rad]");
      ylabel ("Power density [dB/rad/sample]");
    else
      plot (f, 10*log10 (Pxx));
      xlabel ("frequency [Hz]");
      ylabel ("Power density [dB/Hz]");
    endif
    grid on;
    title ("Periodogram Power Spectral Density Estimate");
  else
    pxx = Pxx;
  endif

endfunction


## FIXME: Need some functional tests


## Test input validation
%!error <Invalid call> periodogram ()
%!error <Invalid call> periodogram (1,2,3,4,5,6)
%!error <X must be a real or complex vector> periodogram (ones (2,2))
%!error <WIN must be a vector.*same length> periodogram (1:5, ones (2,2))
%!error <WIN must be a vector.*same length> periodogram (1:5, 1:6)
%!error <NFFT must be a scalar> periodogram (1:5, 1:5, 1:5)
%!error <FS must be a scalar> periodogram (1:5, [], [], 1:5)
%!error <"centered" range type is not implemented> periodogram (1:5, "centered")