view scripts/sparse/bicgstab.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 34097a2f1f60
children e1788b1a315f
line wrap: on
line source

########################################################################
##
## Copyright (C) 2008-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}, @dots{})
## @deftypefnx {} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} bicgstab (@var{A}, @var{b}, @dots{})
## Solve @code{A x = b} using the stabilized Bi-conjugate gradient iterative
## method.
##
## The input parameters are:
##
## @itemize @minus
##
## @item @var{A} is the matrix of the linear system and it must be square.
## @var{A} can be passed as a matrix, function handle, or inline
## function @code{Afun} such that @code{Afun(x) = A * x}.  Additional
## parameters to @code{Afun} are passed after @var{x0}.
##
## @item @var{b} is the right hand side vector.  It must be a column vector
## with the same number of rows as @var{A}.
##
## @item
## @var{tol} is the required relative tolerance for the residual error,
## @w{@code{@var{b} - @var{A} * @var{x}}}.  The iteration stops if
## @w{@code{norm (@var{b} - @var{A} * @var{x})} @leq{}
## @w{@code{@var{tol} * norm (@var{b})}}}.
## If @var{tol} is omitted or empty, then a tolerance of 1e-6 is used.
##
## @item @var{maxit} the maximum number of outer iterations, if not given or
## set to [] the default value @code{min (20, numel (b))} is used.
##
## @item @var{M1}, @var{M2} are the preconditioners.  The preconditioner
## @var{M} is given as @code{@var{M} = @var{M1} * @var{M2}}.
## Both @var{M1} and @var{M2} can be passed as a matrix or as a function
## handle or inline function @code{g} such that
## @code{g(@var{x}) = @var{M1} \ @var{x}} or
## @code{g(@var{x}) = @var{M2} \ @var{x}}.
## The technique used is the right preconditioning, i.e., it is
## solved @code{@var{A} * inv (@var{M}) * @var{y} = @var{b}} and then
## @code{@var{x} = inv (@var{M}) * @var{y}}.
##
## @item @var{x0} the initial guess, if not given or set to [] the default
## value @code{zeros (size (@var{b}))} is used.
##
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed in
## a proper way to any of the functions (@var{A} or @var{M}) which are passed
## to @code{bicstab}.
##
## The output parameters are:
##
## @itemize @minus
##
## @item @var{x} is the approximation computed.  If the method doesn't
## converge then it is the iterated with the minimum residual.
##
## @item @var{flag} indicates the exit status:
##
## @itemize @minus
## @item 0: iteration converged to the within the chosen tolerance
##
## @item 1: the maximum number of iterations was reached before convergence
##
## @item 2: the preconditioner matrix is singular
##
## @item 3: the algorithm reached stagnation
##
## @item 4: the algorithm can't continue due to a division by zero
## @end itemize
##
## @item @var{relres} is the relative residual obtained with as
## @code{(@var{A}*@var{x}-@var{b}) / @code{norm(@var{b})}}.
##
## @item @var{iter} is the (possibly half) iteration which @var{x} is
## computed.  If it is an half iteration then it is @code{@var{iter} + 0.5}
##
## @item @var{resvec} is a vector containing the residual of each half and
## total iteration (There are also the half iterations since @var{x} is
## computed in two steps at each iteration).
## Doing @code{(length(@var{resvec}) - 1) / 2} is possible to see the
## total number of (total) iterations performed.
##
## @end itemize
##
## Let us consider a trivial problem with a tridiagonal matrix
##
## @example
## @group
## n = 20;
## A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n))  + ...
##     toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
##     sparse (1, 2, 1, 1, n) * n / 2);
## b = A * ones (n, 1);
## restart = 5;
## [M1, M2] = ilu (A); # in this tridiag case, it corresponds to lu (A)
## M = M1 * M2;
## Afun = @@(x) A * x;
## Mfun = @@(x) M \ x;
## M1fun = @@(x) M1 \ x;
## M2fun = @@(x) M2 \ x;
## @end group
## @end example
##
## @sc{Example 1:} simplest usage of @code{bicgstab}
##
## @example
## x = bicgstab (A, b, [], n)
## @end example
##
## @sc{Example 2:} @code{bicgstab} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## x = bicgstab (Afun, b, [], n)
## @end example
##
## @sc{Example 3:} @code{bicgstab} with a preconditioner matrix @var{M}
##
## @example
## x = bicgstab (A, b, [], 1e-06, n, M)
## @end example
##
## @sc{Example 4:} @code{bicgstab} with a function as preconditioner
##
## @example
## x = bicgstab (Afun, b, 1e-6, n, Mfun)
## @end example
##
## @sc{Example 5:} @code{bicgstab} with preconditioner matrices @var{M1}
## and @var{M2}
##
## @example
## x = bicgstab (A, b, [], 1e-6, n, M1, M2)
## @end example
##
## @sc{Example 6:} @code{bicgstab} with functions as preconditioners
##
## @example
## x = bicgstab (Afun, b, 1e-6, n, M1fun, M2fun)
## @end example
##
## @sc{Example 7:} @code{bicgstab} with as input a function requiring
## an argument
##
## @example
## @group
## function y = Ap (A, x, z) # compute A^z * x
##    y = x;
##    for i = 1:z
##      y = A * y;
##    endfor
##  endfunction
## Apfun = @@(x, string, p) Ap (A, x, string, p);
## x = bicgstab (Apfun, b, [], [], [], [], [], 2);
## @end group
## @end example
##
## @sc{Example 8:} explicit example to show that @code{bicgstab} uses a
## right preconditioner
##
## @example
## @group
## [M1, M2] = ilu (A + 0.1 * eye (n)); # factorization of A perturbed
## M = M1 * M2;
##
## ## reference solution computed by bicgstab after one iteration
## [x_ref, fl] = bicgstab (A, b, [], 1, M)
##
## ## right preconditioning
## [y, fl] = bicgstab (A / M, b, [], 1)
## x = M \ y # compare x and x_ref
##
## @end group
## @end example
##
## Reference:
##
## @nospell{Y. Saad}, @cite{Iterative Methods for Sparse Linear
## Systems}, Second edition, 2003, SIAM
##
## @seealso{bicg, cgs, gmres, pcg, qmr, tfqmr}
##
## @end deftypefn

function [x_min, flag, relres, iter_min, resvec] = ...
         bicgstab (A, b, tol = [], maxit = [], M1 = [], M2 = [], ...
                   x0 = [], varargin)

  ## Check consistency and  type of A, M1, M2
  [Afun, M1fun, M2fun] =  __alltohandles__ (A, b, M1, M2, "bicgstab");

  ## Check if input tol are empty (set them to default if necessary)
  [tol, maxit, x0] = __default__input__ ({1e-06, min(rows(b), 20), ...
                    zeros(rows (b), 1)}, tol, maxit, x0);

  norm_b = norm (b, 2);
  if (norm_b == 0)
    if (nargout < 2)
      printf ("The right hand side vector is all zero so bicgstab \n")
      printf ("returned an all zero solution without iterating.\n")
    endif
    x_min = zeros (numel (b), 1);
    iter_min = 0;
    flag = 0;
    resvec = 0;
    relres = 0;
    return;
  endif

  ## Double maxit to mind also the "half iterations"
  d_maxit = 2 * maxit;
  iter = iter_min = 0;
  resvec = zeros (d_maxit,1);
  x = x_min = x_pr = x0;
  iter = iter_min = 0;
  ## default setting of flag is 1 (i.e. max number of iterations reached)
  flag = 1;

  res = b - feval (Afun, x, varargin{:});
  rr = p = res; # rr is r_star
  rho_1 = rr' * res;
  resvec (1) = norm (res,2);
  real_tol = norm_b * tol;

  ## To check if the preconditioners are singular or they have some NaN
  try
    warning ("error", "Octave:singular-matrix", "local");
    p_hat = feval (M1fun, p, varargin{:});
    p_hat = feval (M2fun, p_hat, varargin{:});
  catch
    flag = 2;
  end_try_catch

  while (flag !=2) && (iter < d_maxit) && (resvec (iter + 1) >= real_tol)
    v = feval (Afun, p_hat, varargin{:});
    prod_tmp = (rr' * v);
    if (prod_tmp == 0)
      flag = 4;
      break;
    endif
    alpha = rho_1 / (prod_tmp);
    x += alpha * p_hat;
    s = res - alpha * v;
    iter += 1;
    resvec (iter+1) = norm (s,2);
    if (resvec (iter + 1) <= real_tol) # reached the tol
      x_min = x;
      iter_min = iter;
      break;
    elseif (resvec (iter + 1) <= resvec (iter_min + 1)) # Found min residual
      x_min = x;
      iter_min = iter;
    endif
    s_hat = feval (M1fun, s, varargin{:});
    s_hat = feval (M2fun, s_hat, varargin{:});
    t = feval (Afun, s_hat, varargin{:});
    omega = (t' * s) / (t' * t);
    if (omega == 0) # x and residual don't change and the next it will be NaN
      flag = 4;
      break;
    endif
    x += omega * s_hat;
    res = s - omega * t;
    iter += 1;
    resvec (iter + 1) = norm (res);
    if (resvec (iter + 1) <= resvec (iter_min + 1))
      x_min = x;
      iter_min = iter;
    endif
    if (norm (x - x_pr) <= norm (x) * eps)
      flag = 3;
      break;
    endif
    x_pr = x;
    rho_2 = rho_1;
    rho_1 = rr' * res;
    if (rho_1 == 0) # x and residual don't change and the next it will be NaN
      flag = 4;
      break;
    endif
    beta = (rho_1 / rho_2) * (alpha / omega);
    p = res + beta * (p - omega*  v);
    p_hat = feval (M1fun, p, varargin{:});
    p_hat = feval (M2fun, p_hat, varargin{:});
  endwhile
  resvec = resvec (1:iter+1,1);

  relres = resvec (iter_min + 1) / norm_b;  # I set the relative residual
  iter /=  2;
  iter_min /= 2;

  if (flag == 1) && (relres <= tol)
    flag = 0;
  endif

  ## output strings to print when the outputs requested are less than 2
  if (nargout < 2)
    switch (flag)
      case {0}
        printf ("bicgstab converged at iteration %i ", iter_min);
        printf ("to a solution with relative residual %e\n", relres);
      case {1}
        printf ("bicgstab stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the maximum number of iterations was reached.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
      case {2}
        printf ("bicgstab stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the preconditioner matrix is singular.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
      case {3}
        printf ("bicgstab stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the method stagnated.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
      case {4}
        printf ("bicgstab stopped at iteration %i ", iter);
        printf ("without converging to the desired tolerance %e\n", tol);
        printf ("because the method can't continue.\n");
        printf ("The iterate returned (number %i) ", iter_min);
        printf ("has relative residual %e\n", relres);
    endswitch
  endif

endfunction


%!demo # simplest use
%! n = 20;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n))  + ...
%!     toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%!               sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.1 * eye (n));
%! M = M1 * M2;
%! x = bicgstab (A, b, [], n);
%! Afun = @(x) A * x;
%! x = bicgstab (Afun, b, [], n);
%! x = bicgstab (A, b, 1e-6, n, M);
%! x = bicgstab (A, b, 1e-6, n, M1, M2);
%! Mfun = @(z) M \ z;
%! x = bicgstab (Afun, b, 1e-6, n, Mfun);
%! M1fun = @(z) M1 \ z;
%! M2fun = @(z) M2 \ z;
%! x = bicgstab (Afun, b, 1e-6, n, M1fun, M2fun);
%! function y = Ap (A, x, z)
%!   ## compute A^z * x or (A^z)' * x
%!   y = x;
%!   for i = 1:z
%!     y = A * y;
%!   endfor
%! endfunction
%! Afun = @(x, p) Ap (A, x, p);
%! x = bicgstab (Afun, b, [], 2 * n, [], [], [], 2); # solution of A^2 * x = b

%!demo
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n))  + ...
%!     toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%!               sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.3 * eye (n));  # factorization of A perturbed
%! M = M1 * M2;
%!
%! ## Reference solution computed by bicgstab after one iteration
%! [x_ref, fl] = bicgstab (A, b, [], 1, M);
%! x_ref
%!
%! ## right preconditioning
%! [y, fl] = bicgstab (A / M, b, [], 1);
%! ## Compare x and x_ref
%! x = M \ y

%!test
%! ## Check that all type of inputs work
%! A = toeplitz (sparse ([2, 1, 0, 0, 0]), sparse ([2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M1 = diag (sqrt (diag (A)));
%! M2 = M1;
%! maxit = 20;
%! Afun = @(z) A*z;
%! M1_fun = @(z) M1 \ z;
%! M2_fun = @(z) M2 \ z;
%! [x, flag] = bicgstab (A,b );
%! assert (flag, 0);
%! [x, flag] = bicgstab (A, b, [], maxit, M1, M2);
%! assert (flag, 0);
%! [x, flag] = bicgstab (A, b, [], maxit, M1_fun, M2_fun);
%! assert (flag, 0);
%! [x, flag] = bicgstab (A, b, [], maxit, M1_fun, M2);
%! assert (flag, 0);
%! [x, flag] = bicgstab (A, b, [], maxit, M1, M2_fun);
%! assert (flag, 0);
%! [x, flag] = bicgstab (Afun, b);
%! assert (flag, 0);
%! [x, flag] = bicgstab (Afun, b, [], maxit, M1, M2);
%! assert (flag, 0);
%! [x, flag] = bicgstab (Afun, b, [], maxit, M1_fun, M2);
%! assert (flag, 0);
%! [x, flag] = bicgstab (Afun, b, [], maxit, M1, M2_fun);
%! assert (flag, 0);
%! [x, flag] = bicgstab (Afun, b, [], maxit, M1_fun, M2_fun);
%! assert (flag, 0);

%!shared n, A, b, tol, maxit, M1, M2
%! n = 100;
%! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n);
%! b = sum (A, 2);
%! tol = 1e-8;
%! maxit = 15;
%! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n);
%! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n);

%!test
%! [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, maxit, M1, M2);
%! assert (norm (b - A*x) / norm (b), 0, tol);

%!function y = afun (x, a)
%!  y = a * x;
%!endfunction
%!
%!test
%! [x, flag, relres, iter, resvec] = bicgstab (@(x) afun (x, A), b,
%!                                             tol, maxit, M1, M2);
%! assert (norm (b - A*x) / norm (b), 0, tol);

%!test
%! a = sprand (n, n, .1);
%! A = a'*a + 100 * speye (n);
%! b = sum (A, 2);
%! [x, flag, relres, iter, resvec] = bicgstab (A, b, tol, [], diag (diag (A)));
%! assert (norm (b - A*x) / norm (b), 0, tol);

%!test
%! ## bicgstab solves complex linear systems
%! A = [1 + 1i, 1 + 1i; 2 - 1i, 2 + 1i];
%! b = A * [1; 1];
%! [x, flag, relres, iter, resvec] = bicgstab (A, b);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);

%!test
%! ## test with a non-symmetric matrix
%! A = diag (1:50);
%! A(1,50) = 10000;
%! b = ones (50,1);
%! [x, flag, relres, iter, resvec] = bicgstab (A, b, [], 100);
%! assert (flag, 0);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);

%!test
%! ## test that bicgstab detects a singular preconditioner
%! M = ones (50);
%! M(1,1) = 0;
%! [x, flag] = bicgstab (A, b, [], 100, M);
%! assert (flag, 2);

%!test
%! A = single (1);
%! b = 1;
%! [x, flag] = bicgstab (A, b);
%! assert (class (x), "single");

%!test
%! A = 1;
%! b = single (1);
%! [x, flag] = bicgstab (A, b);
%! assert (class (x), "single");

%!test
%! A = single (1);
%! b = single (1);
%! [x, flag] = bicgstab (A, b);
%! assert (class (x), "single");

%!test
%!function y = Afun (x)
%!  A = sparse (toeplitz ([2, 1, 0, 0], [2, -1, 0, 0]));
%!  y = A * x;
%!endfunction
%!
%! b = [1; 2; 2; 3];
%! [x, flag] = bicgstab ("Afun", b);
%! assert (norm (b - A*x) / norm (b), 0, 1e-6);

%!test
%! ## unpreconditioned residual
%! A = sparse (toeplitz ([2, 1, 0, 0, 0], [2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = magic (5);
%! [x, flag, relres] = bicgstab (A, b, [], 2, M);
%! assert (norm (b - A * x) / norm (b), relres, 8*eps);