view scripts/sparse/svds.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 7854d5752dd2
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2006-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{s} =} svds (@var{A})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}, @var{opts})
## @deftypefnx {} {[@var{u}, @var{s}, @var{v}] =} svds (@dots{})
## @deftypefnx {} {[@var{u}, @var{s}, @var{v}, @var{flag}] =} svds (@dots{})
##
## Find a few singular values of the matrix @var{A}.
##
## The singular values are calculated using
##
## @example
## @group
## [@var{m}, @var{n}] = size (@var{A});
## @var{s} = eigs ([sparse(@var{m}, @var{m}), @var{A};
##                      @var{A}', sparse(@var{n}, @var{n})])
## @end group
## @end example
##
## The eigenvalues returned by @code{eigs} correspond to the singular values
## of @var{A}.  The number of singular values to calculate is given by @var{k}
## and defaults to 6.
##
## The argument @var{sigma} specifies which singular values to find.  When
## @var{sigma} is the string @qcode{'L'}, the default, the largest singular
## values of @var{A} are found.  Otherwise, @var{sigma} must be a real scalar
## and the singular values closest to @var{sigma} are found.  As a corollary,
## @code{@var{sigma} = 0} finds the smallest singular values.  Note that for
## relatively small values of @var{sigma}, there is a chance that the
## requested number of singular values will not be found.  In that case
## @var{sigma} should be increased.
##
## @var{opts} is a structure defining options that @code{svds} will pass
## to @code{eigs}.  The possible fields of this structure are documented in
## @code{eigs}.  By default, @code{svds} sets the following three fields:
##
## @table @code
## @item tol
## The required convergence tolerance for the singular values.  The default
## value is 1e-10.  @code{eigs} is passed @code{@var{tol} / sqrt (2)}.
##
## @item maxit
## The maximum number of iterations.  The default is 300.
##
## @item disp
## The level of diagnostic printout (0|1|2).  If @code{disp} is 0 then
## diagnostics are disabled.  The default value is 0.
## @end table
##
## If more than one output is requested then @code{svds} will return an
## approximation of the singular value decomposition of @var{A}
##
## @example
## @var{A}_approx = @var{u}*@var{s}*@var{v}'
## @end example
##
## @noindent
## where @var{A}_approx is a matrix of size @var{A} but only rank @var{k}.
##
## @var{flag} returns 0 if the algorithm has successfully converged, and 1
## otherwise.  The test for convergence is
##
## @example
## @group
## norm (@var{A}*@var{v} - @var{u}*@var{s}, 1) <= @var{tol} * norm (@var{A}, 1)
## @end group
## @end example
##
## @code{svds} is best for finding only a few singular values from a large
## sparse matrix.  Otherwise, @code{svd (full (@var{A}))} will likely be more
## efficient.
## @seealso{svd, eigs}
## @end deftypefn

function [u, s, v, flag] = svds (A, k, sigma, opts)

  persistent root2 = sqrt (2);

  if (nargin < 1)
    print_usage ();
  endif

  if (ndims (A) > 2)
    error ("svds: A must be a 2-D matrix");
  endif

  if (nargin < 4)
    opts.tol = 0;    # use ARPACK default
    opts.disp = 0;
    opts.maxit = 300;
  else
    if (! isstruct (opts))
      error ("svds: OPTS must be a structure");
    endif
    if (! isfield (opts, "tol"))
      opts.tol = 0;  # use ARPACK default
    else
      opts.tol = opts.tol / root2;
    endif
    if (isfield (opts, "v0"))
      if (! isvector (opts.v0) || (length (opts.v0) != sum (size (A))))
        error ("svds: OPTS.v0 must be a vector with rows (A) + columns (A) entries");
      endif
    endif
  endif

  if (nargin < 3 || strcmp (sigma, "L"))
    if (isreal (A))
      sigma = "LA";
    else
      sigma = "LR";
    endif
  elseif (isscalar (sigma) && isnumeric (sigma) && isreal (sigma))
    if (sigma < 0)
      error ("svds: SIGMA must be a positive real value");
    endif
  else
    error ("svds: SIGMA must be a positive real value or the string 'L'");
  endif

  [m, n] = size (A);
  max_a = max (abs (nonzeros (A)));
  if (isempty (max_a))
    max_a = 0;
  endif
  ## Must initialize variable value, otherwise it may appear to interpreter
  ## that code is trying to call flag() colormap function.
  flag = 0;

  if (max_a == 0)
    s = zeros (k, 1);  # special case of zero matrix
  else
    if (nargin < 2)
      k = min ([6, m, n]);
    else
      k = min ([k, m, n]);
    endif

    ## Scale everything by the 1-norm to make things more stable.
    b = A / max_a;
    b_opts = opts;
    ## Call to eigs is always a symmetric matrix by construction
    b_opts.issym = true;
    b_sigma = sigma;
    if (! ischar (b_sigma))
      b_sigma /= max_a;
    endif

    if (b_sigma == 0)
      ## Find the smallest eigenvalues
      ## The eigenvalues returns by eigs for sigma=0 are symmetric about 0.
      ## As we are only interested in the positive eigenvalues, we have to
      ## double k and then throw out the k negative eigenvalues.
      ## Separately, if sigma is nonzero, but smaller than the smallest
      ## singular value, ARPACK may not return k eigenvalues.  However, as
      ## computation scales with k we'd like to avoid doubling k for all
      ## scalar values of sigma.
      b_k = 2 * k;
    else
      b_k = k;  # Normal case, find just the k largest eigenvalues
    endif

    if (nargout > 1)
      [V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)],
                           b_k, b_sigma, b_opts);
      s = diag (s);
    else
      s = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts);
    endif

    if (ischar (sigma))
      norma = max (s);
    else
      norma = normest (A);
    endif
    ## We wish to exclude all eigenvalues that are less than zero as these
    ## are artifacts of the way the matrix passed to eigs is formed.  There
    ## is also the possibility that the value of sigma chosen is exactly
    ## a singular value, and in that case we're dead!! So have to rely on
    ## the warning from eigs.  We exclude the singular values which are
    ## less than or equal to zero to within some tolerance scaled by the
    ## norm since if we don't we might end up with too many singular
    ## values.
    if (b_sigma == 0)
      if (sum (s>0) < k)
        ## It may happen that the number of positive s is less than k.
        ## In this case, take -s (if s in an eigenvalue, so is -s),
        ## flipped upside-down.
        s = flipud (-s);
      endif
    endif
    tol = norma * opts.tol;
    ind = find (s > tol);
    if (length (ind) < k)
      ## Too few eigenvalues returned.  Add in any zero eigenvalues of B,
      ## including the nominally negative ones.
      zind = find (abs (s) <= tol);
      p = min (length (zind), k - length (ind));
      ind = [ind; zind(1:p)];
    elseif (length (ind) > k)
      ## Too many eigenvalues returned.  Select according to criterion.
      if (b_sigma == 0)
        ind = ind(end+1-k:end); # smallest eigenvalues
      else
        ind = ind(1:k);         # largest eigenvalues
      endif
    endif
    s = s(ind);

    if (length (s) < k)
      warning ("svds: returning fewer singular values than requested");
      if (! ischar (sigma))
        warning ("svds: try increasing the value of sigma");
      endif
    endif

    s *= max_a;
  endif

  if (nargout < 2)
    u = s;
  else
    if (max_a == 0)
      u = eye (m, k);
      s = diag (s);
      v = eye (n, k);
    else
      u = root2 * V(1:m,ind);
      s = diag (s);
      v = root2 * V(m+1:end,ind);
    endif

    if (nargout > 3)
      flag = (flag != 0);
    endif
  endif

endfunction


%!shared n, k, A, u, s, v, opts, rand_state, randn_state, tol
%! n = 100;
%! k = 7;
%! A = sparse ([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),0.4*n*ones(1,n),ones(1,n-2)]);
%! [u,s,v] = svd (full (A));
%! s = diag (s);
%! [~, idx] = sort (abs (s));
%! s = s(idx);
%! u = u(:, idx);
%! v = v(:, idx);
%! rand_state = rand ("state");
%! rand ("state", 42);
%! opts.v0 = rand (2*n,1);  # Initialize eigs ARPACK starting vector
%!                          # to guarantee reproducible results

%!testif HAVE_ARPACK
%! [u2,s2,v2,flag] = svds (A,k);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s(end:-1:end-k+1), tol);

%!testif HAVE_ARPACK, HAVE_UMFPACK
%! [u2,s2,v2,flag] = svds (A,k,0,opts);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s(k:-1:1), tol);

%!testif HAVE_ARPACK, HAVE_UMFPACK
%! idx = floor (n/2);
%! % Don't put sigma right on a singular value or there are convergence issues
%! sigma = 0.99*s(idx) + 0.01*s(idx+1);
%! [u2,s2,v2,flag] = svds (A,k,sigma,opts);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s((idx+floor (k/2)):-1:(idx-floor (k/2))), tol);

%!testif HAVE_ARPACK
%! [u2,s2,v2,flag] = svds (zeros (10), k);
%! assert (u2, eye (10, k));
%! assert (s2, zeros (k));
%! assert (v2, eye (10, 7));
%!
%!testif HAVE_ARPACK
%! s = svds (speye (10));
%! assert (s, ones (6, 1), 8*eps);

%!testif HAVE_ARPACK <57185>
%! z = complex (ones (10), ones (10));
%! s = svds (z);
%! assert (isreal (s));

%!test
%! ## Restore random number generator seed at end of tests
%! rand ("state", rand_state);