view scripts/special-matrix/hadamard.m @ 30564:796f54d4ddbf stable

update Octave Project Developers copyright for the new year In files that have the "Octave Project Developers" copyright notice, update for 2021. In all .txi and .texi files except gpl.txi and gpl.texi in the doc/liboctave and doc/interpreter directories, change the copyright to "Octave Project Developers", the same as used for other source files. Update copyright notices for 2022 (not done since 2019). For gpl.txi and gpl.texi, change the copyright notice to be "Free Software Foundation, Inc." and leave the date at 2007 only because this file only contains the text of the GPL, not anything created by the Octave Project Developers. Add Paul Thomas to contributors.in.
author John W. Eaton <jwe@octave.org>
date Tue, 28 Dec 2021 18:22:40 -0500
parents 363fb10055df
children 5d3faba0342e
line wrap: on
line source

########################################################################
##
## Copyright (C) 1993-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
##
## Original version by Paul Kienzle distributed as free software in the
## public domain.

## -*- texinfo -*-
## @deftypefn {} {} hadamard (@var{n})
## Construct a Hadamard matrix (@nospell{Hn}) of size @var{n}-by-@var{n}.
##
## The size @var{n} must be of the form @math{2^k * p} in which p is one of
## 1, 12, 20 or 28.  The returned matrix is normalized, meaning
## @w{@code{Hn(:,1) == 1}} and @w{@code{Hn(1,:) == 1}}.
##
## Some of the properties of Hadamard matrices are:
##
## @itemize @bullet
## @item
## @code{kron (Hm, Hn)} is a Hadamard matrix of size @var{m}-by-@var{n}.
##
## @item
## @code{Hn * Hn' = @var{n} * eye (@var{n})}.
##
## @item
## The rows of @nospell{Hn} are orthogonal.
##
## @item
## @code{det (@var{A}) <= abs (det (Hn))} for all @var{A} with
## @w{@code{abs (@var{A}(i, j)) <= 1}}.
##
## @item
## Multiplying any row or column by -1 and the matrix will remain a Hadamard
## matrix.
## @end itemize
## @seealso{compan, hankel, toeplitz}
## @end deftypefn

## Reference [1] contains a list of Hadamard matrices up to n=256.
## See code for h28 in hadamard.m for an example of how to extend
## this function for additional p.
##
## Reference:
## [1] A Library of Hadamard Matrices, N. J. A. Sloane
##     http://www.research.att.com/~njas/hadamard/

function h = hadamard (n)

  if (nargin < 1)
    print_usage ();
  endif

  ## Find k if n = 2^k*p.
  k = 0;
  while (n > 1 && fix (n/2) == n/2)
    k += 1;
    n /= 2;
  endwhile

  ## Find base hadamard.
  ## Except for n=2^k, need a multiple of 4.
  if (n != 1)
    k -= 2;
  endif

  ## Trigger error if not a multiple of 4.
  if (k < 0)
    n =- 1;
  endif

  switch (n)
    case 1
      h = 1;
    case 3
      h = h12 ();
    case 5
      h = h20 ();
    case 7
      h = h28 ();
    otherwise
      error ("hadamard: N must be 2^k*p, for p = 1, 12, 20 or 28");
  endswitch

  ## Build H(2^k*n) from kron(H(2^k),H(n)).
  h2 = [1,1;1,-1];
  while (true)
    if (fix (k/2) != k/2)
      h = kron (h2, h);
    endif
    k = fix (k/2);
    if (k == 0)
      break;
    endif
    h2 = kron (h2, h2);
  endwhile

endfunction

function h = h12 ()
  tu = [-1,+1,-1,+1,+1,+1,-1,-1,-1,+1,-1];
  tl = [-1,-1,+1,-1,-1,-1,+1,+1,+1,-1,+1];
  ## Note: assert (tu(2:end), tl(end:-1:2)).
  h = ones (12);
  h(2:end,2:end) = toeplitz (tu, tl);
endfunction

function h = h20 ()
  tu = [+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1];
  tl = [+1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,-1];
  ## Note: assert (tu(2:end), tl(end:-1:2)).
  h = ones (20);
  h(2:end,2:end) = fliplr (toeplitz (tu, tl));
endfunction

function h = h28 ()

  ## Williamson matrix construction from
  ## http://www.research.att.com/~njas/hadamard/had.28.will.txt
  ## Normalized so that each row and column starts with +1
  h = [1 1  1  1  1  1  1  1  1 1  1  1  1 1 1 1 1 1  1 1 1 1 1  1 1  1 1  1
       1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 1 -1 1 1 1 1 -1 1 -1 1 -1
       1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1 1
       1 -1 -1 1 -1 -1 -1 1 1 1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1
       1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 -1 -1
       1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 -1
       1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 -1 1 -1 1 -1 1
       1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 1 -1
       1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 1 -1 1
       1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1
       1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1
       1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1
       1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1
       1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1
       1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1
       1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1 -1 -1
       1 1 -1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1
       1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1
       1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1
       1 1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1
       1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1
       1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1
       1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1 -1 1 1
       1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1
       1 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 -1
       1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 -1
       1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 -1 1
       1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1];
endfunction


%!assert (hadamard (1), 1)
%!assert (hadamard (2), [1,1;1,-1])
%!test
%! for n = [1,2,4,8,12,24,48,20,28,2^9]
%!   h = hadamard (n);
%!   assert (norm (h*h' - n*eye (n)), 0);
%! endfor

%!error <Invalid call> hadamard ()
%!error hadamard (1,2)
%!error <N must be 2\^k\*p> hadamard (5)