view libinterp/corefcn/eig.cc @ 30923:7ad60a258a2b

Allow "econ" argument to qr() function (bug #62277). * qr.cc (Fqr): Add documentation for "econ" input argument. Add input decoding for string "econ". Change error message for unrecognized input to bound it with double quote characters. Update functional and input validation BIST tests.
author Arun Giridhar <arungiridhar@gmail.com>
date Sat, 09 Apr 2022 14:52:25 -0700
parents 796f54d4ddbf
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"

#include "EIG.h"
#include "fEIG.h"
#include "oct-string.h"

OCTAVE_NAMESPACE_BEGIN

DEFUN (eig, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{lambda} =} eig (@var{A})
@deftypefnx {} {@var{lambda} =} eig (@var{A}, @var{B})
@deftypefnx {} {[@var{V}, @var{lambda}] =} eig (@var{A})
@deftypefnx {} {[@var{V}, @var{lambda}] =} eig (@var{A}, @var{B})
@deftypefnx {} {[@var{V}, @var{lambda}, @var{W}] =} eig (@var{A})
@deftypefnx {} {[@var{V}, @var{lambda}, @var{W}] =} eig (@var{A}, @var{B})
@deftypefnx {} {[@dots{}] =} eig (@var{A}, @var{balanceOption})
@deftypefnx {} {[@dots{}] =} eig (@var{A}, @var{B}, @var{algorithm})
@deftypefnx {} {[@dots{}] =} eig (@dots{}, @var{eigvalOption})
Compute the eigenvalues (@var{lambda}) and optionally the right eigenvectors
(@var{V}) and the left eigenvectors (@var{W}) of a matrix or pair of matrices.

The flag @var{balanceOption} can be one of:

@table @asis
@item @qcode{"balance"} (default)
Preliminary balancing is on.

@item @qcode{"nobalance"}
Disables preliminary balancing.
@end table

The flag @var{eigvalOption} can be one of:

@table @asis
@item @qcode{"matrix"}
Return the eigenvalues in a diagonal matrix.  (default if 2 or 3 outputs
are requested)

@item @qcode{"vector"}
Return the eigenvalues in a column vector.  (default if only 1 output is
requested, e.g., @var{lambda} = eig (@var{A}))
@end table

The flag @var{algorithm} can be one of:

@table @asis
@item @qcode{"chol"}
Use the Cholesky factorization of B.  (default if @var{A} is symmetric
(Hermitian) and @var{B} is symmetric (Hermitian) positive definite)

@item @qcode{"qz"}
Use the QZ algorithm.  (used whenever @var{A} or @var{B} are not symmetric)
@end table

@multitable @columnfractions .31 .23 .23 .23
@headitem @tab no flag @tab chol @tab qz
@item both are symmetric
@tab @qcode{"chol"}
@tab @qcode{"chol"}
@tab @qcode{"qz"}
@item at least one is not symmetric
@tab @qcode{"qz"}
@tab @qcode{"qz"}
@tab @qcode{"qz"}
@end multitable

The eigenvalues returned by @code{eig} are not ordered.
@seealso{eigs, svd}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin > 4 || nargin == 0)
    print_usage ();

  octave_value_list retval;

  octave_value arg_a, arg_b;

  arg_a = args(0);

  if (arg_a.isempty ())
    return octave_value_list (2, Matrix ());

  if (! arg_a.isfloat ())
    err_wrong_type_arg ("eig", arg_a);

  if (arg_a.rows () != arg_a.columns ())
    err_square_matrix_required ("eig", "A");

  // determine if it's AEP or GEP
  bool AEPcase = nargin == 1 || args(1).is_string ();

  if (! AEPcase)
    {
      arg_b = args(1);

      if (arg_b.isempty ())
        return octave_value_list (2, Matrix ());

      if (! arg_b.isfloat ())
        err_wrong_type_arg ("eig", arg_b);

      if (arg_b.rows () != arg_b.columns ())
        err_square_matrix_required ("eig", "B");
    }

  bool qz_flag = false;
  bool chol_flag = false;
  bool balance_flag = false;
  bool no_balance_flag = false;
  bool matrix_flag = false;
  bool vector_flag = false;

  for (int i = (AEPcase ? 1 : 2); i < args.length (); ++i)
    {
      if (! args(i).is_string ())
        err_wrong_type_arg ("eig", args(i));

      std::string arg_i = args(i).string_value ();
      if (string::strcmpi (arg_i, "qz"))
        qz_flag = true;
      else if (string::strcmpi (arg_i, "chol"))
        chol_flag = true;
      else if (string::strcmpi (arg_i, "balance"))
        balance_flag = true;
      else if (string::strcmpi (arg_i, "nobalance"))
        no_balance_flag = true;
      else if (string::strcmpi (arg_i, "matrix"))
        matrix_flag = true;
      else if (string::strcmpi (arg_i, "vector"))
        vector_flag = true;
      else
        error (R"(eig: invalid option "%s")", arg_i.c_str ());
    }

  if (balance_flag && no_balance_flag)
    error (R"(eig: "balance" and "nobalance" options are mutually exclusive)");
  if (vector_flag && matrix_flag)
    error (R"(eig: "vector" and "matrix" options are mutually exclusive)");
  if (qz_flag && chol_flag)
    error (R"(eig: "qz" and "chol" options are mutually exclusive)");

  if (AEPcase)
    {
      if (qz_flag)
        error (R"(eig: invalid "qz" option for algebraic eigenvalue problem)");
      if (chol_flag)
        error (R"(eig: invalid "chol" option for algebraic eigenvalue problem)");
    }
  else
    {
      if (balance_flag)
        error (R"(eig: invalid "balance" option for generalized eigenvalue problem)");
      if (no_balance_flag)
        error (R"(eig: invalid "nobalance" option for generalized eigenvalue problem)");
    }

  // Default is to balance
  const bool balance = (no_balance_flag ? false : true);
  const bool force_qz = qz_flag;


  Matrix tmp_a, tmp_b;
  ComplexMatrix ctmp_a, ctmp_b;
  FloatMatrix ftmp_a, ftmp_b;
  FloatComplexMatrix fctmp_a, fctmp_b;

  if (arg_a.is_single_type ())
    {
      FloatEIG result;
      if (AEPcase)
        {
          if (arg_a.isreal ())
            {
              ftmp_a = arg_a.float_matrix_value ();

              result = FloatEIG (ftmp_a, nargout > 1, nargout > 2, balance);
            }
          else
            {
              fctmp_a = arg_a.float_complex_matrix_value ();

              result = FloatEIG (fctmp_a, nargout > 1, nargout > 2, balance);
            }
        }
      else
        {
          if (arg_a.isreal () && arg_b.isreal ())
            {
              ftmp_a = arg_a.float_matrix_value ();
              ftmp_b = arg_b.float_matrix_value ();

              result = FloatEIG (ftmp_a, ftmp_b, nargout > 1, nargout > 2,
                                 force_qz);
            }
          else
            {
              fctmp_a = arg_a.float_complex_matrix_value ();
              fctmp_b = arg_b.float_complex_matrix_value ();

              result = FloatEIG (fctmp_a, fctmp_b, nargout > 1, nargout > 2,
                                 force_qz);
            }
        }

      if (nargout == 0 || nargout == 1)
        {
          if (matrix_flag)
            retval = ovl (FloatComplexDiagMatrix (result.eigenvalues ()));
          else
            retval = ovl (result.eigenvalues ());
        }
      else if (nargout == 2)
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (), result.eigenvalues ());
          else
            retval = ovl (result.right_eigenvectors (),
                          FloatComplexDiagMatrix (result.eigenvalues ()));
        }
      else
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (),
                          result.eigenvalues (),
                          result.left_eigenvectors ());
          else
            retval = ovl (result.right_eigenvectors (),
                          FloatComplexDiagMatrix (result.eigenvalues ()),
                          result.left_eigenvectors ());
        }
    }
  else
    {
      EIG result;

      if (AEPcase)
        {
          if (arg_a.isreal ())
            {
              tmp_a = arg_a.matrix_value ();

              result = EIG (tmp_a, nargout > 1, nargout > 2, balance);
            }
          else
            {
              ctmp_a = arg_a.complex_matrix_value ();

              result = EIG (ctmp_a, nargout > 1, nargout > 2, balance);
            }
        }
      else
        {
          if (arg_a.isreal () && arg_b.isreal ())
            {
              tmp_a = arg_a.matrix_value ();
              tmp_b = arg_b.matrix_value ();

              result = EIG (tmp_a, tmp_b, nargout > 1, nargout > 2, force_qz);
            }
          else
            {
              ctmp_a = arg_a.complex_matrix_value ();
              ctmp_b = arg_b.complex_matrix_value ();

              result = EIG (ctmp_a, ctmp_b, nargout > 1, nargout > 2, force_qz);
            }
        }

      if (nargout == 0 || nargout == 1)
        {
          if (matrix_flag)
            retval = ovl (ComplexDiagMatrix (result.eigenvalues ()));
          else
            retval = ovl (result.eigenvalues ());
        }
      else if (nargout == 2)
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (), result.eigenvalues ());
          else
            retval = ovl (result.right_eigenvectors (),
                          ComplexDiagMatrix (result.eigenvalues ()));
        }
      else
        {
          if (vector_flag)
            retval = ovl (result.right_eigenvectors (),
                          result.eigenvalues (),
                          result.left_eigenvectors ());
          else
            retval = ovl (result.right_eigenvectors (),
                          ComplexDiagMatrix (result.eigenvalues ()),
                          result.left_eigenvectors ());
        }
    }

  return retval;
}

/*
%!assert (eig ([1, 2; 2, 1]), [-1; 3], sqrt (eps))

%!test
%! [v, d] = eig ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (d, [-1, 0; 0, 3], sqrt (eps))
%! assert (v, [-x, x; x, x], sqrt (eps))

%!test
%! [v, d, w] = eig ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (w, [-x, x; x, x], sqrt (eps))

%!test
%! [v, d] = eig ([1, 2; 2, 1], "balance");
%! x = 1 / sqrt (2);
%! assert (d, [-1, 0; 0, 3], sqrt (eps))
%! assert (v, [-x, x; x, x], sqrt (eps))

%!test
%! [v, d, w] = eig ([1, 2; 2, 1], "balance");
%! x = 1 / sqrt (2);
%! assert (w, [-x, x; x, x], sqrt (eps));

%!assert (eig (single ([1, 2; 2, 1])), single ([-1; 3]), sqrt (eps ("single")))

%!assert (eig (single ([1, 2; 2, 1]), "balance"),
%!        single ([-1; 3]), sqrt (eps ("single")))

%!test
%! [v, d] = eig (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (d, single ([-1, 0; 0, 3]), sqrt (eps ("single")))
%! assert (v, [-x, x; x, x], sqrt (eps ("single")))

%!test
%! [v, d, w] = eig (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (w, [-x, x; x, x], sqrt (eps ("single")))

%!test
%! [v, d] = eig (single ([1, 2; 2, 1]), "balance");
%! x = single (1 / sqrt (2));
%! assert (d, single ([-1, 0; 0, 3]), sqrt (eps ("single")));
%! assert (v, [-x, x; x, x], sqrt (eps ("single")))

%!test
%! [v, d, w] = eig (single ([1, 2; 2, 1]), "balance");
%! x = single (1 / sqrt (2));
%! assert (w, [-x, x; x, x], sqrt (eps ("single")))


## If (at least one of) the matrices are non-symmetric,
## regardless the algorithm flag the qz algorithm should be used.
## So the results without algorithm flag, with "qz" and with "chol"
## should be the same.
%!function nonsym_chol_2_output (A, B, res = sqrt (eps))
%!  [v, d] = eig (A, B);
%!  [v2, d2] = eig (A, B, "qz");
%!  [v3, d3] = eig (A, B, "chol");
%!  assert (A * v(:, 1), d(1, 1) * B * v(:, 1), res)
%!  assert (A * v(:, 2), d(2, 2) * B * v(:, 2), res)
%!  assert (v, v2)
%!  assert (v, v3)
%!  assert (d, d2)
%!  assert (d, d3)
%!endfunction

%!test nonsym_chol_2_output ([1, 2; -1, 1], [3, 3; 1, 2])
%!test nonsym_chol_2_output ([1+3i, 2+3i; 3-8i, 8+3i], [8+i, 3+i; 4-9i, 3+i])
%!test nonsym_chol_2_output ([1, 2; 3, 8], [8, 3; 4, 3])

%!test nonsym_chol_2_output (single ([1, 2; -1, 1]),
%!                           single ([3, 3; 1, 2]), sqrt (eps ("single")))
%!test nonsym_chol_2_output (single ([1+3i, 2+3i; 3-8i, 8+3i]),
%!                           single ([8+i, 3+i; 4-9i, 3+i]),
%!                           sqrt (eps ("single")))

%!function nonsym_chol_3_output (A, B, res = sqrt (eps))
%!  [v, d, w] = eig (A, B);
%!  [v2, d2, w2] = eig (A, B, "qz");
%!  [v3, d3, w3] = eig (A, B, "chol");
%!  wt = w';
%!  assert (wt(1, :)* A, d(1, 1) * wt(1, :) * B, res)
%!  assert (wt(2, :)* A, d(2, 2) * wt(2, :) * B, res)
%!  assert (v, v2)
%!  assert (v, v3)
%!  assert (d, d2)
%!  assert (d, d3)
%!  assert (w, w2)
%!  assert (w, w3)
%!endfunction

%!test nonsym_chol_3_output ([1, 2; -1, 1], [3, 3; 1, 2])
%!test nonsym_chol_3_output ([1+3i, 2+3i; 3-8i, 8+3i], [8+i, 3+i; 4-9i, 3+i])
%!test nonsym_chol_3_output ([1, 2; 3, 8], [8, 3; 4, 3])

%!test nonsym_chol_3_output (single ([1, 2; -1, 1]),
%!                           single ([3, 3; 1, 2]), sqrt (eps ("single")))
%!test nonsym_chol_3_output (single ([1+3i, 2+3i; 3-8i, 8+3i]),
%!                           single ([8+i, 3+i; 4-9i, 3+i]),
%!                           sqrt (eps ("single")))

## If the matrices are symmetric,
## then the chol method is default.
## So the results without algorithm flag and with "chol" should be the same.
%!function sym_chol_2_input (A, B, res = sqrt (eps))
%!  [v, d] = eig (A, B);
%!  [v2, d2] = eig (A, B, "chol");
%!  assert (A * v(:, 1), d(1, 1) * B * v(:, 1), res)
%!  assert (A * v(:, 2), d(2, 2) * B * v(:, 2), res)
%!  assert (v, v2)
%!  assert (d, d2)
%!endfunction

%!test sym_chol_2_input ([1, 2; 2, 1], [3, -2; -2, 3])
%!test sym_chol_2_input ([1+3i, 2+i; 2-i, 1+3i], [5+9i, 2+i; 2-i, 5+9i])
%!test sym_chol_2_input ([1, 1+i; 1-i, 1], [2, 0; 0, 2])

%!test sym_chol_2_input (single ([1, 2; 2, 1]), single ([3, -2; -2, 3]),
%!                       sqrt (eps ("single")))
%!test sym_chol_2_input (single ([1+3i, 2+i; 2-i, 1+3i]),
%!                       single ([5+9i, 2+i; 2-i, 5+9i]), sqrt (eps ("single")))
%!test sym_chol_2_input (single ([1, 1+i; 1-i, 1]), single ([2, 0; 0, 2]),
%!                       sqrt (eps ("single")))

%!function sym_chol_3_input (A, B, res = sqrt (eps))
%!  [v, d, w] = eig (A, B);
%!  [v2, d2, w2] = eig (A, B, "chol");
%!  wt = w';
%!  assert (wt(1, :)* A, d(1, 1) * wt(1, :) * B, res)
%!  assert (wt(2, :)* A, d(2, 2) * wt(2, :) * B, res)
%!  assert (v, v2)
%!  assert (d, d2)
%!  assert (w, w2)
%!endfunction

%!test sym_chol_3_input ([1, 2; 2, 1], [3, -2; -2, 3])
%!test sym_chol_3_input ([1+3i, 2+i; 2-i, 1+3i], [5+9i, 2+i; 2-i, 5+9i])
%!test sym_chol_3_input ([1, 1+i; 1-i, 1], [2, 0; 0, 2])

%!test sym_chol_3_input (single ([1, 2; 2, 1]), single ([3, -2; -2, 3]),
%!                       sqrt (eps ("single")))
%!test sym_chol_3_input (single ([1+3i, 2+i; 2-i, 1+3i]),
%!                       single ([5+9i, 2+i; 2-i, 5+9i]), sqrt (eps ("single")))
%!test sym_chol_3_input (single ([1, 1+i; 1-i, 1]), single ([2, 0; 0, 2]),
%!                       sqrt (eps ("single")))

## "balance" is always default
## so the results with and without "balance" should be the same
## while in this case "nobalance" should produce different result
%!test
%! A = [3 -2 -0.9 0; -2 4 1 -0; -0 0 -1 0; -0.5 -0.5 0.1 1];
%! [V1, D1] = eig (A);
%! [V2, D2] = eig (A, "balance");
%! [V3, D3] = eig (A, "nobalance");
%! assert (V1, V2)
%! assert (D1, D2)
%! assert (isequal (V2, V3), false)

## Testing the flags in all combination.
## If 2 flags are on, than the result should be the same regardless
## of the flags order.
## option1 represents the first order while option2 represents the other order.
## d and d2 should be a diagonal matrix if "matrix" flag is on while
## these should be column vectors if the "vector" flag is on.
%!function test_eig_args (args, options1, options2, testd = @() true)
%!  [v, d, w] = eig (args{:}, options1{:});
%!  [v2, d2, w2] = eig (args{:}, options2{:});
%!  assert (testd (d))
%!  assert (testd (d2))
%!  assert (v, v2)
%!  assert (d, d2)
%!  assert (w, w2)
%!endfunction

%!function qz_chol_with_shapes (A, B)
%!  for shapes = struct ("name", {"vector", "matrix"},
%!                       "test", {@isvector, @isdiag})
%!    test_eig_args ({A, B}, {"qz", shapes.name},
%!                   {shapes.name, "qz"}, shapes.test);
%!    test_eig_args ({A, B}, {"chol", shapes.name},
%!                   {shapes.name, "chol"}, shapes.test);
%!  endfor
%!endfunction

%!function balance_nobalance_with_shapes (A)
%!  for shapes = struct ("name", {"vector", "matrix"},
%!                       "test", {@isvector, @isdiag})
%!    test_eig_args ({A}, {"balance", shapes.name},
%!                   {shapes.name, "balance"}, shapes.test);
%!    test_eig_args ({A}, {"nobalance", shapes.name},
%!                   {shapes.name, "nobalance"}, shapes.test);
%!  endfor
%!endfunction

## Default return format:
## diagonal matrix if 2 or 3 outputs are specified
## column vector if 1 output is specified
%!function test_shapes (args)
%!  d = eig (args{:});
%!  assert (isvector (d))
%!  d2 = eig (args{:}, "vector");
%!  assert (isvector (d2))
%!  [v, d3] = eig (args{:});
%!  assert (isdiag (d3))
%!  d4 = eig (args{:}, "matrix");
%!  assert (isdiag (d4))
%!  [v, d5, w] = eig (args{:});
%!  assert (isdiag (d5))
%!  d6 = eig (args{:}, "matrix");
%!  assert (isdiag (d6))
%!  assert (d, d2)
%!  assert (d3, d4)
%!  assert (d5, d6)
%!  assert (d, diag (d3))
%!  assert (d, diag (d5))
%!endfunction

%!function shapes_AEP (A)
%!  test_shapes({A});
%!endfunction

%!function shapes_GEP (A, B)
%!  test_shapes({A, B});
%!endfunction

%!test balance_nobalance_with_shapes ([1, 2; 2, 1]);
%!test balance_nobalance_with_shapes (single ([1, 2; 2, 1]));

%!test shapes_AEP ([1, 2; 2, 1]);
%!test shapes_AEP (single ([1, 2; 2, 1]));

%!test qz_chol_with_shapes ([1, 1+i; 1-i, 1], [2, 0; 0, 2]);
%!test qz_chol_with_shapes ([1, 2; 3, 8], [8, 3; 4, 3]);
%!test qz_chol_with_shapes ([1, 2; -1, 1], [3, 3; 1, 2]);

%!test qz_chol_with_shapes (single ([1, 1+i; 1-i, 1]),  single ([2, 0; 0, 2]));
%!test qz_chol_with_shapes (single ([1, 2; 3, 8]),  single ([8, 3; 4, 3]));
%!test qz_chol_with_shapes (single ([1, 2; -1, 1]),  single ([3, 3; 1, 2]));

%!test shapes_GEP ([1, 1+i; 1-i, 1], [2, 0; 0, 2]);
%!test shapes_GEP ([1, 2; 3, 8], [8, 3; 4, 3]);
%!test shapes_GEP ([1, 2; -1, 1], [3, 3; 1, 2]);

%!test shapes_GEP (single ([1, 1+i; 1-i, 1]),  single ([2, 0; 0, 2]));
%!test shapes_GEP (single ([1, 2; 3, 8]),  single ([8, 3; 4, 3]));
%!test shapes_GEP (single ([1, 2; -1, 1]),  single ([3, 3; 1, 2]));

## Check if correct default method is used for symmetric input
%!function chol_qz_accuracy (A, B, is_qz_accurate, is_chol_accurate)
%!  [V1, D1] = eig (A, B, 'qz');
%!  [V2, D2] = eig (A, B); #default is chol
%!  assert (isequal (A*V1, A*V1*D1), is_qz_accurate)
%!  assert (isequal (A*V2, A*V2*D2), is_chol_accurate)
%!endfunction
%!test
%! minij_100 = gallery ('minij', 100);
%! chol_qz_accuracy (minij_100, minij_100, false, true);
%! moler_100 = gallery ('moler', 100);
%! chol_qz_accuracy (moler_100, moler_100, false, true);
%! A = diag([1e-16, 1e-15]);
%! chol_qz_accuracy (A, A, true, false);

%!error eig ()
%!error eig (false)
%!error eig ([1, 2; 3, 4], [4, 3; 2, 1], 1)

%!error <EIG requires same size matrices>
%!  eig ([1, 2; 3, 4], 2)
%!error <must be a square matrix>
%! eig ([1, 2; 3, 4; 5, 6])
%!error <wrong type argument>
%!  eig ("abcd")
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], "abcd")
%!error <invalid "chol" option for algebraic eigenvalue problem>
%!  eig ([1 2 ; 2 3], "chol")
%!error <invalid "qz" option for algebraic eigenvalue problem>
%!  eig ([1 2 ; 2 3], "qz")
%!error <wrong type argument>
%!  eig (false, [1 2 ; 2 3])
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "abcd")
%!error <invalid "qz" option for algebraic eigenvalue problem>
%!  eig ([1 2 ; 2 3], "balance", "qz")
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "vector", "abcd")
%!error <invalid option "abcd">
%!  eig ([1 2 ; 2 3], "balance", "matrix", "abcd")
%!error <"balance" and "nobalance" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "balance", "nobalance")
%!error <"balance" and "nobalance" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "nobalance", "balance")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "matrix", "vector")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], "vector", "matrix")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "matrix", "vector")
%!error <"vector" and "matrix" options are mutually exclusive>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], "vector", "matrix")
%!error <wrong type argument>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], false)
%!error <wrong type argument>
%!  eig ([1 2 ; 2 3], [1 2 ; 2 3], [1 2 ; 2 3])
*/

OCTAVE_NAMESPACE_END