view libinterp/corefcn/givens.cc @ 30923:7ad60a258a2b

Allow "econ" argument to qr() function (bug #62277). * qr.cc (Fqr): Add documentation for "econ" input argument. Add input decoding for string "econ". Change error message for unrecognized input to bound it with double quote characters. Update functional and input validation BIST tests.
author Arun Giridhar <arungiridhar@gmail.com>
date Sat, 09 Apr 2022 14:52:25 -0700
parents 796f54d4ddbf
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

// Originally written by A. S. Hodel <scotte@eng.auburn.edu>

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "defun.h"
#include "error.h"
#include "ovl.h"

OCTAVE_NAMESPACE_BEGIN

DEFUN (givens, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{G} =} givens (@var{x}, @var{y})
@deftypefnx {} {[@var{c}, @var{s}] =} givens (@var{x}, @var{y})
Compute the Givens rotation matrix @var{G}.

@tex
The Givens matrix is a $2\times 2$ orthogonal matrix
$$
 G = \left[\matrix{c & s\cr -s'& c\cr}\right]
$$
such that
$$
 G \left[\matrix{x\cr y}\right] = \left[\matrix{\ast\cr 0}\right]
$$
with $x$ and $y$ scalars.
@end tex
@ifnottex
The Givens matrix is a 2-by-2 orthogonal matrix

@example
@group
@var{G} = [ @var{c} , @var{s}
     -@var{s}', @var{c}]
@end group
@end example

@noindent
such that

@example
@var{G} * [@var{x}; @var{y}] = [*; 0]
@end example

@noindent
with @var{x} and @var{y} scalars.
@end ifnottex

If two output arguments are requested, return the factors @var{c} and @var{s}
rather than the Givens rotation matrix.

For example:

@example
@group
givens (1, 1)
   @result{}   0.70711   0.70711
       -0.70711   0.70711
@end group
@end example

Note: The Givens matrix represents a counterclockwise rotation of a 2-D
plane and can be used to introduce zeros into a matrix prior to complete
factorization.
@seealso{planerot, qr}
@end deftypefn */)
{
  if (args.length () != 2)
    print_usage ();

  octave_value_list retval;

  if (args(0).is_single_type () || args(1).is_single_type ())
    {
      if (args(0).iscomplex () || args(1).iscomplex ())
        {
          FloatComplex cx = args(0).float_complex_value ();
          FloatComplex cy = args(1).float_complex_value ();

          FloatComplexMatrix result = Givens (cx, cy);

          switch (nargout)
            {
            case 0:
            case 1:
              retval = ovl (result);
              break;

            case 2:
              retval = ovl (result(0, 0), result(0, 1));
              break;
            }
        }
      else
        {
          float x = args(0).float_value ();
          float y = args(1).float_value ();

          FloatMatrix result = Givens (x, y);

          switch (nargout)
            {
            case 0:
            case 1:
              retval = ovl (result);
              break;

            case 2:
              retval = ovl (result(0, 0), result(0, 1));
              break;
            }
        }
    }
  else
    {
      if (args(0).iscomplex () || args(1).iscomplex ())
        {
          Complex cx = args(0).complex_value ();
          Complex cy = args(1).complex_value ();

          ComplexMatrix result = Givens (cx, cy);

          switch (nargout)
            {
            case 0:
            case 1:
              retval = ovl (result);
              break;

            case 2:
              retval = ovl (result(0, 0), result(0, 1));
              break;
            }
        }
      else
        {
          double x = args(0).double_value ();
          double y = args(1).double_value ();

          Matrix result = Givens (x, y);

          switch (nargout)
            {
            case 0:
            case 1:
              retval = ovl (result);
              break;

            case 2:
              retval = ovl (result(0, 0), result(0, 1));
              break;
            }
        }
    }

  return retval;
}

/*
%!assert (givens (1,1), [1, 1; -1, 1] / sqrt (2), 2*eps)
%!assert (givens (1,0), eye (2))
%!assert (givens (0,1), [0, 1; -1 0])

%!error givens ()
%!error givens (1)
%!error [a,b,c] = givens (1, 1)
*/

OCTAVE_NAMESPACE_END