view libinterp/corefcn/hess.cc @ 30923:7ad60a258a2b

Allow "econ" argument to qr() function (bug #62277). * qr.cc (Fqr): Add documentation for "econ" input argument. Add input decoding for string "econ". Change error message for unrecognized input to bound it with double quote characters. Update functional and input validation BIST tests.
author Arun Giridhar <arungiridhar@gmail.com>
date Sat, 09 Apr 2022 14:52:25 -0700
parents 796f54d4ddbf
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "hess.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"

OCTAVE_NAMESPACE_BEGIN

DEFUN (hess, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{H} =} hess (@var{A})
@deftypefnx {} {[@var{P}, @var{H}] =} hess (@var{A})
@cindex Hessenberg decomposition
Compute the Hessenberg decomposition of the matrix @var{A}.

The Hessenberg decomposition is
@tex
$$
A = PHP^T
$$
where $P$ is a square unitary matrix ($P^TP = I$), and $H$
is upper Hessenberg ($H_{i,j} = 0, \forall i > j+1$).
@end tex
@ifnottex
@code{@var{P} * @var{H} * @var{P}' = @var{A}} where @var{P} is a square
unitary matrix (@code{@var{P}' * @var{P} = I}, using complex-conjugate
transposition) and @var{H} is upper Hessenberg
(@code{@var{H}(i, j) = 0 forall i > j+1)}.
@end ifnottex

The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well
(see @nospell{Golub, Nash, and Van Loan},
IEEE Transactions on Automatic Control, 1979).
@seealso{eig, chol, lu, qr, qz, schur, svd}
@end deftypefn */)
{
  if (args.length () != 1)
    print_usage ();

  octave_value arg = args(0);

  if (arg.isempty ())
    return octave_value_list (2, Matrix ());

  if (arg.rows () != arg.columns ())
    err_square_matrix_required ("hess", "A");

  octave_value_list retval;

  if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          FloatMatrix tmp = arg.float_matrix_value ();

          math::hess<FloatMatrix> result (tmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
      else if (arg.iscomplex ())
        {
          FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();

          math::hess<FloatComplexMatrix> result (ctmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
    }
  else
    {
      if (arg.isreal ())
        {
          Matrix tmp = arg.matrix_value ();

          math::hess<Matrix> result (tmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
      else if (arg.iscomplex ())
        {
          ComplexMatrix ctmp = arg.complex_matrix_value ();

          math::hess<ComplexMatrix> result (ctmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
      else
        err_wrong_type_arg ("hess", arg);
    }

  return retval;
}

/*
%!test
%! a = [1, 2, 3; 5, 4, 6; 8, 7, 9];
%! [p, h] = hess (a);
%! assert (p * h * p', a, sqrt (eps));

%!test
%! a = single ([1, 2, 3; 5, 4, 6; 8, 7, 9]);
%! [p, h] = hess (a);
%! assert (p * h * p', a, sqrt (eps ("single")));

%!error hess ()
%!error hess ([1, 2; 3, 4], 2)
%!error <must be a square matrix> hess ([1, 2; 3, 4; 5, 6])
*/

OCTAVE_NAMESPACE_END