view libinterp/corefcn/kron.cc @ 30923:7ad60a258a2b

Allow "econ" argument to qr() function (bug #62277). * qr.cc (Fqr): Add documentation for "econ" input argument. Add input decoding for string "econ". Change error message for unrecognized input to bound it with double quote characters. Update functional and input validation BIST tests.
author Arun Giridhar <arungiridhar@gmail.com>
date Sat, 09 Apr 2022 14:52:25 -0700
parents 32d2b6604a9f
children 212cc32100f5 e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"

#include "dSparse.h"
#include "CSparse.h"

#include "dDiagMatrix.h"
#include "fDiagMatrix.h"
#include "CDiagMatrix.h"
#include "fCDiagMatrix.h"

#include "PermMatrix.h"

#include "mx-inlines.cc"
#include "quit.h"

#include "defun.h"
#include "error.h"
#include "ovl.h"

OCTAVE_NAMESPACE_BEGIN

template <typename R, typename T>
static MArray<T>
kron (const MArray<R>& a, const MArray<T>& b)
{
  error_unless (a.ndims () == 2);
  error_unless (b.ndims () == 2);

  octave_idx_type nra = a.rows ();
  octave_idx_type nrb = b.rows ();
  octave_idx_type nca = a.cols ();
  octave_idx_type ncb = b.cols ();

  MArray<T> c (dim_vector (nra*nrb, nca*ncb));
  T *cv = c.fortran_vec ();

  for (octave_idx_type ja = 0; ja < nca; ja++)
    {
      octave_quit ();
      for (octave_idx_type jb = 0; jb < ncb; jb++)
        {
          for (octave_idx_type ia = 0; ia < nra; ia++)
            {
              mx_inline_mul (nrb, cv, a(ia, ja), b.data () + nrb*jb);
              cv += nrb;
            }
        }
    }

  return c;
}

template <typename R, typename T>
static MArray<T>
kron (const MDiagArray2<R>& a, const MArray<T>& b)
{
  error_unless (b.ndims () == 2);

  octave_idx_type nra = a.rows ();
  octave_idx_type nrb = b.rows ();
  octave_idx_type dla = a.diag_length ();
  octave_idx_type nca = a.cols ();
  octave_idx_type ncb = b.cols ();

  MArray<T> c (dim_vector (nra*nrb, nca*ncb), T ());

  for (octave_idx_type ja = 0; ja < dla; ja++)
    {
      octave_quit ();
      for (octave_idx_type jb = 0; jb < ncb; jb++)
        {
          mx_inline_mul (nrb, &c.xelem (ja*nrb, ja*ncb + jb), a.dgelem (ja),
                         b.data () + nrb*jb);
        }
    }

  return c;
}

template <typename T>
static MSparse<T>
kron (const MSparse<T>& A, const MSparse<T>& B)
{
  octave_idx_type idx = 0;
  MSparse<T> C (A.rows () * B.rows (), A.columns () * B.columns (),
                A.nnz () * B.nnz ());

  C.cidx (0) = 0;

  for (octave_idx_type Aj = 0; Aj < A.columns (); Aj++)
    {
      octave_quit ();
      for (octave_idx_type Bj = 0; Bj < B.columns (); Bj++)
        {
          for (octave_idx_type Ai = A.cidx (Aj); Ai < A.cidx (Aj+1); Ai++)
            {
              octave_idx_type Ci = A.ridx (Ai) * B.rows ();
              const T v = A.data (Ai);

              for (octave_idx_type Bi = B.cidx (Bj); Bi < B.cidx (Bj+1); Bi++)
                {
                  C.data (idx) = v * B.data (Bi);
                  C.ridx (idx++) = Ci + B.ridx (Bi);
                }
            }
          C.cidx (Aj * B.columns () + Bj + 1) = idx;
        }
    }

  return C;
}

static PermMatrix
kron (const PermMatrix& a, const PermMatrix& b)
{
  octave_idx_type na = a.rows ();
  octave_idx_type nb = b.rows ();
  const Array<octave_idx_type>& pa = a.col_perm_vec ();
  const Array<octave_idx_type>& pb = b.col_perm_vec ();
  Array<octave_idx_type> res_perm (dim_vector (na * nb, 1));
  octave_idx_type rescol = 0;
  for (octave_idx_type i = 0; i < na; i++)
    {
      octave_idx_type a_add = pa(i) * nb;
      for (octave_idx_type j = 0; j < nb; j++)
        res_perm.xelem (rescol++) = a_add + pb(j);
    }

  return PermMatrix (res_perm, true);
}

template <typename MTA, typename MTB>
octave_value
do_kron (const octave_value& a, const octave_value& b)
{
  MTA am = octave_value_extract<MTA> (a);
  MTB bm = octave_value_extract<MTB> (b);

  return octave_value (kron (am, bm));
}

octave_value
dispatch_kron (const octave_value& a, const octave_value& b)
{
  octave_value retval;
  if (a.is_perm_matrix () && b.is_perm_matrix ())
    retval = do_kron<PermMatrix, PermMatrix> (a, b);
  else if (a.issparse () || b.issparse ())
    {
      if (a.iscomplex () || b.iscomplex ())
        retval = do_kron<SparseComplexMatrix, SparseComplexMatrix> (a, b);
      else
        retval = do_kron<SparseMatrix, SparseMatrix> (a, b);
    }
  else if (a.is_diag_matrix ())
    {
      if (b.is_diag_matrix () && a.rows () == a.columns ()
          && b.rows () == b.columns ())
        {
          // We have two diagonal matrices, the product of those will be
          // another diagonal matrix.  To do that efficiently, extract
          // the diagonals as vectors and compute the product.  That
          // will be another vector, which we then use to construct a
          // diagonal matrix object.  Note that this will fail if our
          // digaonal matrix object is modified to allow the nonzero
          // values to be stored off of the principal diagonal (i.e., if
          // diag ([1,2], 3) is modified to return a diagonal matrix
          // object instead of a full matrix object).

          octave_value tmp = dispatch_kron (a.diag (), b.diag ());
          retval = tmp.diag ();
        }
      else if (a.is_single_type () || b.is_single_type ())
        {
          if (a.iscomplex ())
            retval = do_kron<FloatComplexDiagMatrix, FloatComplexMatrix> (a, b);
          else if (b.iscomplex ())
            retval = do_kron<FloatDiagMatrix, FloatComplexMatrix> (a, b);
          else
            retval = do_kron<FloatDiagMatrix, FloatMatrix> (a, b);
        }
      else
        {
          if (a.iscomplex ())
            retval = do_kron<ComplexDiagMatrix, ComplexMatrix> (a, b);
          else if (b.iscomplex ())
            retval = do_kron<DiagMatrix, ComplexMatrix> (a, b);
          else
            retval = do_kron<DiagMatrix, Matrix> (a, b);
        }
    }
  else if (a.is_single_type () || b.is_single_type ())
    {
      if (a.iscomplex ())
        retval = do_kron<FloatComplexMatrix, FloatComplexMatrix> (a, b);
      else if (b.iscomplex ())
        retval = do_kron<FloatMatrix, FloatComplexMatrix> (a, b);
      else
        retval = do_kron<FloatMatrix, FloatMatrix> (a, b);
    }
  else
    {
      if (a.iscomplex ())
        retval = do_kron<ComplexMatrix, ComplexMatrix> (a, b);
      else if (b.iscomplex ())
        retval = do_kron<Matrix, ComplexMatrix> (a, b);
      else
        retval = do_kron<Matrix, Matrix> (a, b);
    }
  return retval;
}


DEFUN (kron, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{C} =} kron (@var{A}, @var{B})
@deftypefnx {} {@var{C} =} kron (@var{A1}, @var{A2}, @dots{})
Form the Kronecker product of two or more matrices.

This is defined block by block as

@example
c = [ a(i,j)*b ]
@end example

For example:

@example
@group
kron (1:4, ones (3, 1))
     @result{}  1  2  3  4
         1  2  3  4
         1  2  3  4
@end group
@end example

If there are more than two input arguments @var{A1}, @var{A2}, @dots{},
@var{An} the Kronecker product is computed as

@example
kron (kron (@var{A1}, @var{A2}), @dots{}, @var{An})
@end example

@noindent
Since the Kronecker product is associative, this is well-defined.
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2)
    print_usage ();

  octave_value retval;

  octave_value a = args(0);
  octave_value b = args(1);

  retval = dispatch_kron (a, b);

  for (octave_idx_type i = 2; i < nargin; i++)
    retval = dispatch_kron (retval, args(i));

  return retval;
}

/*
%!test
%! x = ones (2);
%! assert (kron (x, x), ones (4));

%!shared x, y, z, p1, p2, d1, d2
%! x =  [1, 2];
%! y =  [-1, -2];
%! z =  [1,  2,  3,  4; 1,  2,  3,  4; 1,  2,  3,  4];
%! p1 = eye (3)([2, 3, 1], :);  ## Permutation matrix
%! p2 = [0 1 0; 0 0 1; 1 0 0];  ## Non-permutation equivalent
%! d1 = diag ([1 2 3]);         ## Diag type matrix
%! d2 = [1 0 0; 0 2 0; 0 0 3];  ## Non-diag equivalent
%!assert (kron (1:4, ones (3, 1)), z)
%!assert (kron (single (1:4), ones (3, 1)), single (z))
%!assert (kron (sparse (1:4), ones (3, 1)), sparse (z))
%!assert (kron (complex (1:4), ones (3, 1)), z)
%!assert (kron (complex (single (1:4)), ones (3, 1)), single (z))
%!assert (kron (x, y, z), kron (kron (x, y), z))
%!assert (kron (x, y, z), kron (x, kron (y, z)))
%!assert (kron (p1, p1), kron (p2, p2))
%!assert (kron (p1, p2), kron (p2, p1))
%!assert (kron (d1, d1), kron (d2, d2))
%!assert (kron (d1, d2), kron (d2, d1))

%!assert (kron (diag ([1, 2]), diag ([3, 4])), diag ([3, 4, 6, 8]))

## Test for two diag matrices.
## See the comments above in dispatch_kron for this case.
%!test
%! expected = zeros (16, 16);
%! expected (1, 11) = 3;
%! expected (2, 12) = 4;
%! expected (5, 15) = 6;
%! expected (6, 16) = 8;
%! assert (kron (diag ([1, 2], 2), diag ([3, 4], 2)), expected);
*/

OCTAVE_NAMESPACE_END