view libinterp/corefcn/symbfact.cc @ 30923:7ad60a258a2b

Allow "econ" argument to qr() function (bug #62277). * qr.cc (Fqr): Add documentation for "econ" input argument. Add input decoding for string "econ". Change error message for unrecognized input to bound it with double quote characters. Update functional and input validation BIST tests.
author Arun Giridhar <arungiridhar@gmail.com>
date Sat, 09 Apr 2022 14:52:25 -0700
parents 83f9f8bda883
children e88a07dec498
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1998-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cmath>

#include <algorithm>
#include <string>

#include "CSparse.h"
#include "boolSparse.h"
#include "dColVector.h"
#include "dSparse.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"
#include "oct-spparms.h"
#include "sparse-util.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "parse.h"
#include "utils.h"

OCTAVE_NAMESPACE_BEGIN

DEFUN (symbfact, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{R}] =} symbfact (@var{S})
@deftypefnx {} {[@dots{}] =} symbfact (@var{S}, @var{typ})
@deftypefnx {} {[@dots{}] =} symbfact (@var{S}, @var{typ}, @var{mode})

Perform a symbolic factorization analysis of the sparse matrix @var{S}.

The input variables are

@table @var
@item S
@var{S} is a real or complex sparse matrix.

@item typ
Is the type of the factorization and can be one of

@table @asis
@item @qcode{"sym"} (default)
Factorize @var{S}.  Assumes @var{S} is symmetric and uses the upper
triangular portion of the matrix.

@item @qcode{"col"}
Factorize @tcode{@var{S}' * @var{S}}.

@item @qcode{"row"}
Factorize @tcode{@var{S} * @var{S}'}.

@item @qcode{"lo"}
Factorize @tcode{@var{S}'}.  Assumes @var{S} is symmetric and uses the lower
triangular portion of the matrix.
@end table

@item mode
When @var{mode} is unspecified return the Cholesky@tie{}factorization for
@var{R}.  If @var{mode} is @qcode{"lower"} or @qcode{"L"} then return
the conjugate transpose @tcode{@var{R}'} which is a lower triangular factor.
The conjugate transpose version is faster and uses less memory, but still
returns the same values for all other outputs: @var{count}, @var{h},
@var{parent}, and @var{post}.
@end table

The output variables are:

@table @var
@item count
The row counts of the Cholesky@tie{}factorization as determined by
@var{typ}.  The computational difficulty of performing the true
factorization using @code{chol} is @code{sum (@var{count} .^ 2)}.

@item h
The height of the elimination tree.

@item parent
The elimination tree itself.

@item post
A sparse boolean matrix whose structure is that of the
Cholesky@tie{}factorization as determined by @var{typ}.
@end table
@seealso{chol, etree, treelayout}
@end deftypefn */)
{
#if defined (HAVE_CHOLMOD)

  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    print_usage ();

  octave_value_list retval;

  double dummy;
  cholmod_sparse Astore;
  cholmod_sparse *A = &Astore;
  A->packed = true;
  A->sorted = true;
  A->nz = nullptr;
#if defined (OCTAVE_ENABLE_64)
  A->itype = CHOLMOD_LONG;
#else
  A->itype = CHOLMOD_INT;
#endif
  A->dtype = CHOLMOD_DOUBLE;
  A->stype = 1;
  A->x = &dummy;

  SparseMatrix sm;
  SparseComplexMatrix scm;

  if (args(0).isreal ())
    {
      sm = args(0).sparse_matrix_value ();
      A->nrow = sm.rows ();
      A->ncol = sm.cols ();
      A->p = sm.cidx ();
      A->i = sm.ridx ();
      A->nzmax = sm.nnz ();
      A->xtype = CHOLMOD_REAL;

      if (A->nrow > 0 && A->ncol > 0)
        A->x = sm.data ();
    }
  else if (args(0).iscomplex ())
    {
      scm = args(0).sparse_complex_matrix_value ();
      A->nrow = scm.rows ();
      A->ncol = scm.cols ();
      A->p = scm.cidx ();
      A->i = scm.ridx ();
      A->nzmax = scm.nnz ();
      A->xtype = CHOLMOD_COMPLEX;

      if (A->nrow > 0 && A->ncol > 0)
        A->x = scm.data ();
    }
  else
    err_wrong_type_arg ("symbfact", args(0));

  bool coletree = false;
  octave_idx_type n = A->nrow;

  if (nargin > 1)
    {
      std::string str = args(1).xstring_value ("TYP must be a string");
      // FIXME: The input validation could be improved to use strncmp
      char ch;
      ch = tolower (str[0]);
      if (ch == 'r')          // 'row'
        A->stype = 0;
      else if (ch == 'c')     // 'col'
        {
          n = A->ncol;
          coletree = true;
          A->stype = 0;
        }
      else if (ch == 's')     // 'sym' (default)
        A->stype = 1;
      else if (ch == 'l')     // 'lo'
        A->stype = -1;
      else
        error (R"(symbfact: unrecognized TYP "%s")", str.c_str ());
    }

  if (nargin == 3)
    {
      std::string str = args(2).xstring_value ("MODE must be a string");
      // FIXME: The input validation could be improved to use strncmp
      char ch;
      ch = toupper (str[0]);
      if (ch != 'L')
        error (R"(symbfact: unrecognized MODE "%s")", str.c_str ());
    }

  if (A->stype && A->nrow != A->ncol)
    err_square_matrix_required ("symbfact", "S");

  OCTAVE_LOCAL_BUFFER (suitesparse_integer, Parent, n);
  OCTAVE_LOCAL_BUFFER (suitesparse_integer, Post, n);
  OCTAVE_LOCAL_BUFFER (suitesparse_integer, ColCount, n);
  OCTAVE_LOCAL_BUFFER (suitesparse_integer, First, n);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, Level, n);

  cholmod_common Common;
  cholmod_common *cm = &Common;
  CHOLMOD_NAME(start) (cm);

  double spu = sparse_params::get_key ("spumoni");
  if (spu == 0.0)
    {
      cm->print = -1;
      SUITESPARSE_ASSIGN_FPTR (printf_func, cm->print_function, nullptr);
    }
  else
    {
      cm->print = static_cast<int> (spu) + 2;
      SUITESPARSE_ASSIGN_FPTR (printf_func, cm->print_function, &SparseCholPrint);
    }

  cm->error_handler = &SparseCholError;
  SUITESPARSE_ASSIGN_FPTR2 (divcomplex_func, cm->complex_divide, divcomplex);
  SUITESPARSE_ASSIGN_FPTR2 (hypot_func, cm->hypotenuse, hypot);

  cholmod_sparse *F = CHOLMOD_NAME(transpose) (A, 0, cm);
  cholmod_sparse *Aup, *Alo;

  if (A->stype == 1 || coletree)
    {
      Aup = A;
      Alo = F;
    }
  else
    {
      Aup = F;
      Alo = A;
    }

  CHOLMOD_NAME(etree) (Aup, Parent, cm);

  ColumnVector tmp (n);    // Declaration must precede any goto cleanup.
  std::string err_msg;

  if (cm->status < CHOLMOD_OK)
    {
      err_msg = "symbfact: matrix corrupted";
      goto cleanup;
    }

  if (CHOLMOD_NAME(postorder) (Parent, n, nullptr, Post, cm) != n)
    {
      err_msg = "symbfact: postorder failed";
      goto cleanup;
    }

  CHOLMOD_NAME(rowcolcounts) (Alo, nullptr, 0, Parent, Post, nullptr, ColCount,
                              First, to_suitesparse_intptr (Level), cm);

  if (cm->status < CHOLMOD_OK)
    {
      err_msg = "symbfact: matrix corrupted";
      goto cleanup;
    }

  if (nargout > 4)
    {
      cholmod_sparse *A1, *A2;

      if (A->stype == 1)
        {
          A1 = A;
          A2 = nullptr;
        }
      else if (A->stype == -1)
        {
          A1 = F;
          A2 = nullptr;
        }
      else if (coletree)
        {
          A1 = F;
          A2 = A;
        }
      else
        {
          A1 = A;
          A2 = F;
        }

      // count the total number of entries in L
      octave_idx_type lnz = 0;
      for (octave_idx_type j = 0 ; j < n ; j++)
        lnz += ColCount[j];

      // allocate the output matrix L (pattern-only)
      SparseBoolMatrix L (dim_vector (n, n), lnz);

      // initialize column pointers
      lnz = 0;
      for (octave_idx_type j = 0 ; j < n ; j++)
        {
          L.xcidx(j) = lnz;
          lnz += ColCount[j];
        }
      L.xcidx(n) = lnz;

      // create a copy of the column pointers
      suitesparse_integer *W = First;
      for (octave_idx_type j = 0 ; j < n ; j++)
        W[j] = L.xcidx (j);

      // get workspace for computing one row of L
      cholmod_sparse *R
        = CHOLMOD_NAME(allocate_sparse) (n, 1, n, false, true,
                                         0, CHOLMOD_PATTERN, cm);
      octave_idx_type *Rp = static_cast<octave_idx_type *> (R->p);
      octave_idx_type *Ri = static_cast<octave_idx_type *> (R->i);

      // compute L one row at a time
      for (octave_idx_type k = 0 ; k < n ; k++)
        {
          // get the kth row of L and store in the columns of L
          CHOLMOD_NAME(row_subtree) (A1, A2, k, Parent, R, cm);
          for (octave_idx_type p = 0 ; p < Rp[1] ; p++)
            L.xridx (W[Ri[p]]++) = k;

          // add the diagonal entry
          L.xridx (W[k]++) = k;
        }

      // free workspace
      CHOLMOD_NAME(free_sparse) (&R, cm);

      // fill L with one's
      std::fill_n (L.xdata (), lnz, true);

      // transpose L to get R, or leave as is
      if (nargin < 3)
        L = L.transpose ();

      retval(4) = L;
    }

  if (nargout > 3)
    {
      for (octave_idx_type i = 0; i < n; i++)
        tmp(i) = Post[i] + 1;
      retval(3) = tmp;
    }

  if (nargout > 2)
    {
      for (octave_idx_type i = 0; i < n; i++)
        tmp(i) = Parent[i] + 1;
      retval(2) = tmp;
    }

  if (nargout > 1)
    {
      // compute the elimination tree height
      octave_idx_type height = 0;
      for (int i = 0 ; i < n ; i++)
        height = std::max (height, Level[i]);
      height++;
      retval(1) = static_cast<double> (height);
    }

  for (octave_idx_type i = 0; i < n; i++)
    tmp(i) = ColCount[i];
  retval(0) = tmp;

cleanup:
  CHOLMOD_NAME(free_sparse) (&F, cm);
  CHOLMOD_NAME(finish) (cm);

  if (! err_msg.empty ())
    error ("%s", err_msg.c_str ());

  return retval;

#else

  octave_unused_parameter (args);
  octave_unused_parameter (nargout);

  err_disabled_feature ("symbfact", "CHOLMOD");

#endif
}

/*
%!testif HAVE_CHOLMOD
%! A = sparse (magic (3));
%! [count, h, parent, post, r] = symbfact (A);
%! assert (count, [3; 2; 1]);
%! assert (h, 3);
%! assert (parent, [2; 3; 0]);
%! assert (r, sparse (triu (true (3))));

%!testif HAVE_CHOLMOD
%! ## Test MODE "lower"
%! A = sparse (magic (3));
%! [~, ~, ~, ~, l] = symbfact (A, "sym", "lower");
%! assert (l, sparse (tril (true (3))));

%!testif HAVE_CHOLMOD <*42587>
%! ## singular matrix
%! A = sparse ([1 0 8;0 1 8;8 8 1]);
%! [count, h, parent, post, r] = symbfact (A);

## Test input validation
%!testif HAVE_CHOLMOD
%! fail ("symbfact ()");
%! fail ("symbfact (1,2,3,4)");
%! fail ("symbfact ({1})", "wrong type argument 'cell'");
%! fail ("symbfact (sparse (1), {1})", "TYP must be a string");
%! fail ("symbfact (sparse (1), 'foobar')", 'unrecognized TYP "foobar"');
%! fail ("symbfact (sparse (1), 'sym', {'L'})", "MODE must be a string");
%! fail ('symbfact (sparse (1), "sym", "foobar")',
%!       'unrecognized MODE "foobar"');
%! fail ("symbfact (sparse ([1, 2; 3, 4; 5, 6]))", "S must be a square matrix");

*/

OCTAVE_NAMESPACE_END