view liboctave/RowVector.cc @ 1229:7d7c3eaa1d3b

[project @ 1995-04-10 01:04:13 by jwe]
author jwe
date Mon, 10 Apr 1995 01:04:46 +0000
parents 1d3dbdfd0d19
children
line wrap: on
line source

// RowVector manipulations.                              -*- C++ -*-
/*

Copyright (C) 1992, 1993, 1994 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "Matrix.h"
#include "mx-inlines.cc"
#include "lo-error.h"
#include "f77-uscore.h"

// Fortran functions we call.

extern "C"
{
  int F77_FCN (dgemv) (const char*, const int*, const int*,
		       const double*, const double*, const int*,
		       const double*, const int*, const double*,
		       double*, const int*, long);

  double F77_FCN (ddot) (const int*, const double*, const int*,
			 const double*, const int*);

/*
 * f2c translates complex*16 as
 *
 *   typedef struct { doublereal re, im; } doublecomplex;
 *
 * and Complex.h from libg++ uses
 *
 *   protected:
 *     double re;
 *     double im;
 *
 * as the only data members, so this should work (fingers crossed that
 * things don't change).
 */

  int F77_FCN (zgemv) (const char*, const int*, const int*,
		       const Complex*, const Complex*, const int*,
		       const Complex*, const int*, const Complex*,
		       Complex*, const int*, long);
}

/*
 * Row Vector class.
 */

#if 0
RowVector&
RowVector::resize (int n)
{
  if (n < 0)
    {
      (*current_liboctave_error_handler)
	("can't resize to negative dimension");
      return *this;
    }

  double *new_data = (double *) NULL;
  if (n > 0)
    {
      new_data = new double [n];
      int min_len = len < n ? len : n;

      for (int i = 0; i < min_len; i++)
	new_data[i] = data[i];
    }

  delete [] data;
  len = n;
  data = new_data;

  return *this;
}

RowVector&
RowVector::resize (int n, double val)
{
  int old_len = len;
  resize (n);
  for (int i = old_len; i < len; i++)
    data[i] = val;

  return *this;
}
#endif

int
RowVector::operator == (const RowVector& a) const
{
  int len = length ();
  if (len != a.length ())
    return 0;
  return equal (data (), a.data (), len);
}

int
RowVector::operator != (const RowVector& a) const
{
  return !(*this == a);
}

RowVector&
RowVector::insert (const RowVector& a, int c)
{
  int a_len = a.length ();
  if (c < 0 || c + a_len - 1 > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  for (int i = 0; i < a_len; i++)
    elem (c+i) = a.elem (i);

  return *this;
}

RowVector&
RowVector::fill (double val)
{
  int len = length ();
  if (len > 0)
    for (int i = 0; i < len; i++)
      elem (i) = val;
  return *this;
}

RowVector&
RowVector::fill (double val, int c1, int c2)
{
  int len = length ();
  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }

  for (int i = c1; i <= c2; i++)
    elem (i) = val;

  return *this;
}

RowVector
RowVector::append (const RowVector& a) const
{
  int len = length ();
  int nc_insert = len;
  RowVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

ColumnVector
RowVector::transpose (void) const
{
  int len = length ();
  return ColumnVector (dup (data (), len), len);
}

RowVector
RowVector::extract (int c1, int c2) const
{
  if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }

  int new_c = c2 - c1 + 1;

  RowVector result (new_c);

  for (int i = 0; i < new_c; i++)
    result.elem (i) = elem (c1+i);

  return result;
}

// row vector by row vector -> row vector operations

RowVector&
RowVector::operator += (const RowVector& a)
{
  int len = length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector += operation attempted");
      return *this;
    }

  if (len == 0)
    return *this;

  double *d = fortran_vec (); // Ensures only one reference to my privates!

  add2 (d, a.data (), len);
  return *this;
}

RowVector&
RowVector::operator -= (const RowVector& a)
{
  int len = length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector -= operation attempted");
      return *this;
    }

  if (len == 0)
    return *this;

  double *d = fortran_vec (); // Ensures only one reference to my privates!

  subtract2 (d, a.data (), len);
  return *this;
}

// row vector by scalar -> row vector operations

ComplexRowVector
operator + (const RowVector& v, const Complex& s)
{
  int len = v.length ();
  return ComplexRowVector (add (v.data (), len, s), len);
}

ComplexRowVector
operator - (const RowVector& v, const Complex& s)
{
  int len = v.length ();
  return ComplexRowVector (subtract (v.data (), len, s), len);
}

ComplexRowVector
operator * (const RowVector& v, const Complex& s)
{
  int len = v.length ();
  return ComplexRowVector (multiply (v.data (), len, s), len);
}

ComplexRowVector
operator / (const RowVector& v, const Complex& s)
{
  int len = v.length ();
  return ComplexRowVector (divide (v.data (), len, s), len);
}

// scalar by row vector -> row vector operations

ComplexRowVector
operator + (const Complex& s, const RowVector& a)
{
  return ComplexRowVector ();
}

ComplexRowVector
operator - (const Complex& s, const RowVector& a)
{
  return ComplexRowVector ();
}

ComplexRowVector
operator * (const Complex& s, const RowVector& a)
{
  return ComplexRowVector ();
}

ComplexRowVector
operator / (const Complex& s, const RowVector& a)
{
  return ComplexRowVector ();
}

// row vector by column vector -> scalar

double
operator * (const RowVector& v, const ColumnVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector multiplication attempted");
      return 0.0;
    }

  int i_one = 1;
  return F77_FCN (ddot) (&len, v.data (), &i_one, a.data (), &i_one);
}

Complex
operator * (const RowVector& v, const ComplexColumnVector& a)
{
  ComplexRowVector tmp (v);
  return tmp * a;
}

// row vector by matrix -> row vector

RowVector
operator * (const RowVector& v, const Matrix& a)
{
  int len = v.length ();
  if (a.rows () != len)
    {
      (*current_liboctave_error_handler)
	("nonconformant vector multiplication attempted");
      return RowVector ();
    }

  if (len == 0 || a.cols () == 0)
    return RowVector (0);

// Transpose A to form A'*x == (x'*A)'

  int a_nr = a.rows ();
  int a_nc = a.cols ();

  char trans = 'T';
  int ld = a_nr;
  double alpha = 1.0;
  double beta  = 0.0;
  int i_one = 1;

  double *y = new double [len];

  F77_FCN (dgemv) (&trans, &a_nc, &a_nr, &alpha, a.data (), &ld,
		   v.data (), &i_one, &beta, y, &i_one, 1L); 

  return RowVector (y, len);
}

ComplexRowVector
operator * (const RowVector& v, const ComplexMatrix& a)
{
  ComplexRowVector tmp (v);
  return tmp * a;
}

// row vector by row vector -> row vector operations

ComplexRowVector
operator + (const RowVector& v, const ComplexRowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector addition attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (add (v.data (), a.data (), len), len);
}

ComplexRowVector
operator - (const RowVector& v, const ComplexRowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector subtraction attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (subtract (v.data (), a.data (), len), len);
}

ComplexRowVector
product (const RowVector& v, const ComplexRowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector product attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (multiply (v.data (), a.data (), len), len);
}

ComplexRowVector
quotient (const RowVector& v, const ComplexRowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector quotient attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (divide (v.data (), a.data (), len), len);
}

// other operations

RowVector
map (d_d_Mapper f, const RowVector& a)
{
  RowVector b (a);
  b.map (f);
  return b;
}

void
RowVector::map (d_d_Mapper f)
{
  for (int i = 0; i < length (); i++)
    elem (i) = f (elem (i));
}

double
RowVector::min (void) const
{
  int len = length ();
  if (len == 0)
    return 0;

  double res = elem (0);

  for (int i = 1; i < len; i++)
    if (elem (i) < res)
      res = elem (i);

  return res;
}

double
RowVector::max (void) const
{
  int len = length ();
  if (len == 0)
    return 0;

  double res = elem (0);

  for (int i = 1; i < len; i++)
    if (elem (i) > res)
      res = elem (i);

  return res;
}

ostream&
operator << (ostream& os, const RowVector& a)
{
//  int field_width = os.precision () + 7;
  for (int i = 0; i < a.length (); i++)
    os << " " /* setw (field_width) */ << a.elem (i);
  return os;
}

istream&
operator >> (istream& is, RowVector& a)
{
  int len = a.length();

  if (len < 1)
    is.clear (ios::badbit);
  else
    {
      double tmp;
      for (int i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
}

/*
 * Complex Row Vector class
 */

ComplexRowVector::ComplexRowVector (const RowVector& a)
  : Array<Complex> (a.length ())
{
  for (int i = 0; i < length (); i++)
    elem (i) = a.elem (i);
}

#if 0
ComplexRowVector&
ComplexRowVector::resize (int n)
{
  if (n < 0)
    {
      (*current_liboctave_error_handler)
	("can't resize to negative dimension");
      return *this;
    }

  Complex *new_data = (Complex *) NULL;
  if (n > 0)
    {
      new_data = new Complex [n];
      int min_len = len < n ? len : n;

      for (int i = 0; i < min_len; i++)
	new_data[i] = data[i];
    }

  delete [] data;
  len = n;
  data = new_data;

  return *this;
}

ComplexRowVector&
ComplexRowVector::resize (int n, double val)
{
  int old_len = len;
  resize (n);
  for (int i = old_len; i < len; i++)
    data[i] = val;

  return *this;
}

ComplexRowVector&
ComplexRowVector::resize (int n, const Complex& val)
{
  int old_len = len;
  resize (n);
  for (int i = old_len; i < len; i++)
    data[i] = val;

  return *this;
}
#endif

int
ComplexRowVector::operator == (const ComplexRowVector& a) const
{
  int len = length ();
  if (len != a.length ())
    return 0;
  return equal (data (), a.data (), len);
}

int
ComplexRowVector::operator != (const ComplexRowVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

ComplexRowVector&
ComplexRowVector::insert (const RowVector& a, int c)
{
  int a_len = a.length ();
  if (c < 0 || c + a_len - 1 > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  for (int i = 0; i < a_len; i++)
    elem (c+i) = a.elem (i);

  return *this;
}

ComplexRowVector&
ComplexRowVector::insert (const ComplexRowVector& a, int c)
{
  int a_len = a.length ();
  if (c < 0 || c + a_len - 1 > length ())
    {
      (*current_liboctave_error_handler) ("range error for insert");
      return *this;
    }

  for (int i = 0; i < a_len; i++)
    elem (c+i) = a.elem (i);

  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (double val)
{
  int len = length ();
  if (len > 0)
    for (int i = 0; i < len; i++)
      elem (i) = val;
  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (const Complex& val)
{
  int len = length ();
  if (len > 0)
    for (int i = 0; i < len; i++)
      elem (i) = val;
  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (double val, int c1, int c2)
{
  int len = length ();
  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }

  for (int i = c1; i <= c2; i++)
    elem (i) = val;

  return *this;
}

ComplexRowVector&
ComplexRowVector::fill (const Complex& val, int c1, int c2)
{
  int len = length ();
  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    {
      (*current_liboctave_error_handler) ("range error for fill");
      return *this;
    }

  if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }

  for (int i = c1; i <= c2; i++)
    elem (i) = val;

  return *this;
}

ComplexRowVector
ComplexRowVector::append (const RowVector& a) const
{
  int len = length ();
  int nc_insert = len;
  ComplexRowVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

ComplexRowVector
ComplexRowVector::append (const ComplexRowVector& a) const
{
  int len = length ();
  int nc_insert = len;
  ComplexRowVector retval (len + a.length ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

ComplexColumnVector
ComplexRowVector::hermitian (void) const
{
  int len = length ();
  return ComplexColumnVector (conj_dup (data (), len), len);
}

ComplexColumnVector
ComplexRowVector::transpose (void) const
{
  int len = length ();
  return ComplexColumnVector (dup (data (), len), len);
}

RowVector
real (const ComplexRowVector& a)
{
  int a_len = a.length ();
  RowVector retval;
  if (a_len > 0)
    retval = RowVector (real_dup (a.data (), a_len), a_len);
  return retval;
}

RowVector
imag (const ComplexRowVector& a)
{
  int a_len = a.length ();
  RowVector retval;
  if (a_len > 0)
    retval = RowVector (imag_dup (a.data (), a_len), a_len);
  return retval;
}

ComplexRowVector
conj (const ComplexRowVector& a)
{
  int a_len = a.length ();
  ComplexRowVector retval;
  if (a_len > 0)
    retval = ComplexRowVector (conj_dup (a.data (), a_len), a_len);
  return retval;
}

// resize is the destructive equivalent for this one

ComplexRowVector
ComplexRowVector::extract (int c1, int c2) const
{
  if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }

  int new_c = c2 - c1 + 1;

  ComplexRowVector result (new_c);

  for (int i = 0; i < new_c; i++)
    result.elem (i) = elem (c1+i);

  return result;
}

// row vector by row vector -> row vector operations

ComplexRowVector&
ComplexRowVector::operator += (const RowVector& a)
{
  int len = length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector += operation attempted");
      return *this;
    }

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  add2 (d, a.data (), len);
  return *this;
}

ComplexRowVector&
ComplexRowVector::operator -= (const RowVector& a)
{
  int len = length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector -= operation attempted");
      return *this;
    }

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  subtract2 (d, a.data (), len);
  return *this;
}

ComplexRowVector&
ComplexRowVector::operator += (const ComplexRowVector& a)
{
  int len = length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector += operation attempted");
      return *this;
    }

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  add2 (d, a.data (), len);
  return *this;
}

ComplexRowVector&
ComplexRowVector::operator -= (const ComplexRowVector& a)
{
  int len = length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector -= operation attempted");
      return *this;
    }

  if (len == 0)
    return *this;

  Complex *d = fortran_vec (); // Ensures only one reference to my privates!

  subtract2 (d, a.data (), len);
  return *this;
}

// row vector by scalar -> row vector operations

ComplexRowVector
operator + (const ComplexRowVector& v, double s)
{
  int len = v.length ();
  return ComplexRowVector (add (v.data (), len, s), len);
}

ComplexRowVector
operator - (const ComplexRowVector& v, double s)
{
  int len = v.length ();
  return ComplexRowVector (subtract (v.data (), len, s), len);
}

ComplexRowVector
operator * (const ComplexRowVector& v, double s)
{
  int len = v.length ();
  return ComplexRowVector (multiply (v.data (), len, s), len);
}

ComplexRowVector
operator / (const ComplexRowVector& v, double s)
{
  int len = v.length ();
  return ComplexRowVector (divide (v.data (), len, s), len);
}

// scalar by row vector -> row vector operations

ComplexRowVector
operator + (double s, const ComplexRowVector& a)
{
  int a_len = a.length ();
  return ComplexRowVector (add (a.data (), a_len, s), a_len);
}

ComplexRowVector
operator - (double s, const ComplexRowVector& a)
{
  int a_len = a.length ();
  return ComplexRowVector (subtract (s, a.data (), a_len), a_len);
}

ComplexRowVector
operator * (double s, const ComplexRowVector& a)
{
  int a_len = a.length ();
  return ComplexRowVector (multiply (a.data (), a_len, s), a_len);
}

ComplexRowVector
operator / (double s, const ComplexRowVector& a)
{
  int a_len = a.length ();
  return ComplexRowVector (divide (s, a.data (), a_len), a_len);
}

// row vector by column vector -> scalar

Complex
operator * (const ComplexRowVector& v, const ColumnVector& a)
{
  ComplexColumnVector tmp (a);
  return v * tmp;
}

Complex
operator * (const ComplexRowVector& v, const ComplexColumnVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector multiplication attempted");
      return 0.0;
    }

  Complex retval (0.0, 0.0);

  for (int i = 0; i < len; i++)
    retval += v.elem (i) * a.elem (i);

  return retval;
}

// row vector by matrix -> row vector

ComplexRowVector
operator * (const ComplexRowVector& v, const ComplexMatrix& a)
{
  int len = v.length ();
  if (a.rows () != len)
    {
      (*current_liboctave_error_handler)
	("nonconformant vector multiplication attempted");
      return ComplexRowVector ();
    }

  if (len == 0 || a.cols () == 0)
    return ComplexRowVector (0);

// Transpose A to form A'*x == (x'*A)'

  int a_nr = a.rows ();
  int a_nc = a.cols ();

  char trans = 'T';
  int ld = a_nr;
  Complex alpha (1.0);
  Complex beta (0.0);
  int i_one = 1;

  Complex *y = new Complex [len];

  F77_FCN (zgemv) (&trans, &a_nc, &a_nr, &alpha, a.data (), &ld,
		   v.data (), &i_one, &beta, y, &i_one, 1L); 

  return ComplexRowVector (y, len);
}

// row vector by row vector -> row vector operations

ComplexRowVector
operator + (const ComplexRowVector& v, const RowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector addition attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (add (v.data (), a.data (), len), len);
}

ComplexRowVector
operator - (const ComplexRowVector& v, const RowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector subtraction attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (subtract (v.data (), a.data (), len), len);
}

ComplexRowVector
product (const ComplexRowVector& v, const RowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector product attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (multiply (v.data (), a.data (), len), len);
}

ComplexRowVector
quotient (const ComplexRowVector& v, const RowVector& a)
{
  int len = v.length ();
  if (len != a.length ())
    {
      (*current_liboctave_error_handler)
	("nonconformant vector quotient attempted");
      return ComplexRowVector ();
    }

  if (len == 0)
    return ComplexRowVector (0);

  return ComplexRowVector (divide (v.data (), a.data (), len), len);
}

// other operations

ComplexRowVector
map (c_c_Mapper f, const ComplexRowVector& a)
{
  ComplexRowVector b (a);
  b.map (f);
  return b;
}

RowVector
map (d_c_Mapper f, const ComplexRowVector& a)
{
  int a_len = a.length ();
  RowVector b (a_len);
  for (int i = 0; i < a_len; i++)
    b.elem (i) = f (a.elem (i));
  return b;
}

void
ComplexRowVector::map (c_c_Mapper f)
{
  for (int i = 0; i < length (); i++)
    elem (i) = f (elem (i));
}

Complex
ComplexRowVector::min (void) const
{
  int len = length ();
  if (len == 0)
    return Complex (0.0);

  Complex res = elem (0);
  double absres = abs (res);

  for (int i = 1; i < len; i++)
    if (abs (elem (i)) < absres)
      {
	res = elem (i);
	absres = abs (res);
      }

  return res;
}

Complex
ComplexRowVector::max (void) const
{
  int len = length ();
  if (len == 0)
    return Complex (0.0);

  Complex res = elem (0);
  double absres = abs (res);

  for (int i = 1; i < len; i++)
    if (abs (elem (i)) > absres)
      {
	res = elem (i);
	absres = abs (res);
      }

  return res;
}

// i/o

ostream&
operator << (ostream& os, const ComplexRowVector& a)
{
//  int field_width = os.precision () + 7;
  for (int i = 0; i < a.length (); i++)
    os << " " /* setw (field_width) */ << a.elem (i);
  return os;
}

istream&
operator >> (istream& is, ComplexRowVector& a)
{
  int len = a.length();

  if (len < 1)
    is.clear (ios::badbit);
  else
    {
      Complex tmp;
      for (int i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/