view liboctave/numeric/lu.cc @ 22329:7f3c7a8bd131

maint: Indent namespaces in liboctave/numeric files.
author John W. Eaton <jwe@octave.org>
date Wed, 17 Aug 2016 10:55:38 -0400
parents bac0d6f07a3e
children 4caa7b28d183
line wrap: on
line source

/*

Copyright (C) 1996-2016 John W. Eaton
Copyright (C) 2009 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "CColVector.h"
#include "CMatrix.h"
#include "dColVector.h"
#include "dMatrix.h"
#include "fCColVector.h"
#include "fCMatrix.h"
#include "fColVector.h"
#include "fMatrix.h"
#include "lo-error.h"
#include "lo-lapack-proto.h"
#include "lo-qrupdate-proto.h"
#include "lu.h"
#include "oct-locbuf.h"

namespace octave
{
  namespace math
  {
    template <typename T>
    lu<T>::lu (const T& l, const T& u,
               const PermMatrix& p)
      : a_fact (u), l_fact (l), ipvt (p.transpose ().col_perm_vec ())
    {
      if (l.columns () != u.rows ())
        (*current_liboctave_error_handler) ("lu: dimension mismatch");
    }

    template <typename T>
    bool
    lu<T>::packed (void) const
    {
      return l_fact.dims () == dim_vector ();
    }

    template <typename T>
    void
    lu<T>::unpack (void)
    {
      if (packed ())
        {
          l_fact = L ();
          a_fact = U (); // FIXME: sub-optimal
          ipvt = getp ();
        }
    }

    template <typename T>
    T
    lu<T>::L (void) const
    {
      if (packed ())
        {
          octave_idx_type a_nr = a_fact.rows ();
          octave_idx_type a_nc = a_fact.cols ();
          octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

          T l (a_nr, mn, ELT_T (0.0));

          for (octave_idx_type i = 0; i < a_nr; i++)
            {
              if (i < a_nc)
                l.xelem (i, i) = 1.0;

              for (octave_idx_type j = 0; j < (i < a_nc ? i : a_nc); j++)
                l.xelem (i, j) = a_fact.xelem (i, j);
            }

          return l;
        }
      else
        return l_fact;
    }

    template <typename T>
    T
    lu<T>::U (void) const
    {
      if (packed ())
        {
          octave_idx_type a_nr = a_fact.rows ();
          octave_idx_type a_nc = a_fact.cols ();
          octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

          T u (mn, a_nc, ELT_T (0.0));

          for (octave_idx_type i = 0; i < mn; i++)
            {
              for (octave_idx_type j = i; j < a_nc; j++)
                u.xelem (i, j) = a_fact.xelem (i, j);
            }

          return u;
        }
      else
        return a_fact;
    }

    template <typename T>
    T
    lu<T>::Y (void) const
    {
      if (! packed ())
        (*current_liboctave_error_handler)
          ("lu: Y () not implemented for unpacked form");

      return a_fact;
    }

    template <typename T>
    Array<octave_idx_type>
    lu<T>::getp (void) const
    {
      if (packed ())
        {
          octave_idx_type a_nr = a_fact.rows ();

          Array<octave_idx_type> pvt (dim_vector (a_nr, 1));

          for (octave_idx_type i = 0; i < a_nr; i++)
            pvt.xelem (i) = i;

          for (octave_idx_type i = 0; i < ipvt.numel (); i++)
            {
              octave_idx_type k = ipvt.xelem (i);

              if (k != i)
                {
                  octave_idx_type tmp = pvt.xelem (k);
                  pvt.xelem (k) = pvt.xelem (i);
                  pvt.xelem (i) = tmp;
                }
            }

          return pvt;
        }
      else
        return ipvt;
    }

    template <typename T>
    PermMatrix
    lu<T>::P (void) const
    {
      return PermMatrix (getp (), false);
    }

    template <typename T>
    ColumnVector
    lu<T>::P_vec (void) const
    {
      octave_idx_type a_nr = a_fact.rows ();

      ColumnVector p (a_nr);

      Array<octave_idx_type> pvt = getp ();

      for (octave_idx_type i = 0; i < a_nr; i++)
        p.xelem (i) = static_cast<double> (pvt.xelem (i) + 1);

      return p;
    }

    template <typename T>
    bool
    lu<T>::regular (void) const
    {
      bool retval = true;

      octave_idx_type k = std::min (a_fact.rows (), a_fact.columns ());

      for (octave_idx_type i = 0; i < k; i++)
        {
          if (a_fact(i, i) == ELT_T ())
            {
              retval = false;
              break;
            }
        }

      return retval;
    }

#if ! defined (HAVE_QRUPDATE_LUU)

    template <typename T>
    void
    lu<T>::update (const VT&, const VT&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

    template <typename T>
    void
    lu<T>::update (const T&, const T&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

    template <typename T>
    void
    lu<T>::update_piv (const VT&, const VT&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

    template <typename T>
    void
    lu<T>::update_piv (const T&, const T&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

#endif

    // Specializations.

    template <>
    lu<Matrix>::lu (const Matrix& a)
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type a_nc = a.cols ();
      octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      double *tmp_data = a_fact.fortran_vec ();

      octave_idx_type info = 0;

      F77_XFCN (dgetrf, DGETRF, (a_nr, a_nc, tmp_data, a_nr, pipvt, info));

      for (octave_idx_type i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<Matrix>::update (const ColumnVector& u, const ColumnVector& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ColumnVector utmp = u;
      ColumnVector vtmp = v;
      F77_XFCN (dlu1up, DLU1UP, (m, n, l.fortran_vec (), m, r.fortran_vec (), k,
                                 utmp.fortran_vec (), vtmp.fortran_vec ()));
    }

    template <>
    void
    lu<Matrix>::update (const Matrix& u, const Matrix& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          ColumnVector utmp = u.column (i);
          ColumnVector vtmp = v.column (i);
          F77_XFCN (dlu1up, DLU1UP, (m, n, l.fortran_vec (),
                                     m, r.fortran_vec (), k,
                                     utmp.fortran_vec (), vtmp.fortran_vec ()));
        }
    }

    template <>
    void
    lu<Matrix>::update_piv (const ColumnVector& u, const ColumnVector& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ColumnVector utmp = u;
      ColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (double, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (dlup1up, DLUP1UP, (m, n, l.fortran_vec (),
                                   m, r.fortran_vec (), k,
                                   ipvt.fortran_vec (),
                                   utmp.data (), vtmp.data (), w));
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<Matrix>::update_piv (const Matrix& u, const Matrix& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (double, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          ColumnVector utmp = u.column (i);
          ColumnVector vtmp = v.column (i);
          F77_XFCN (dlup1up, DLUP1UP, (m, n, l.fortran_vec (),
                                       m, r.fortran_vec (), k,
                                       ipvt.fortran_vec (),
                                       utmp.data (), vtmp.data (), w));
        }
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    template <>
    lu<FloatMatrix>::lu (const FloatMatrix& a)
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type a_nc = a.cols ();
      octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      float *tmp_data = a_fact.fortran_vec ();

      octave_idx_type info = 0;

      F77_XFCN (sgetrf, SGETRF, (a_nr, a_nc, tmp_data, a_nr, pipvt, info));

      for (octave_idx_type i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<FloatMatrix>::update (const FloatColumnVector& u, const FloatColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatColumnVector utmp = u;
      FloatColumnVector vtmp = v;
      F77_XFCN (slu1up, SLU1UP, (m, n, l.fortran_vec (),
                                 m, r.fortran_vec (), k,
                                 utmp.fortran_vec (), vtmp.fortran_vec ()));
    }

    template <>
    void
    lu<FloatMatrix>::update (const FloatMatrix& u, const FloatMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          FloatColumnVector utmp = u.column (i);
          FloatColumnVector vtmp = v.column (i);
          F77_XFCN (slu1up, SLU1UP, (m, n, l.fortran_vec (),
                                     m, r.fortran_vec (), k,
                                     utmp.fortran_vec (), vtmp.fortran_vec ()));
        }
    }

    template <>
    void
    lu<FloatMatrix>::update_piv (const FloatColumnVector& u,
                                 const FloatColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatColumnVector utmp = u;
      FloatColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (float, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (slup1up, SLUP1UP, (m, n, l.fortran_vec (),
                                   m, r.fortran_vec (), k,
                                   ipvt.fortran_vec (),
                                   utmp.data (), vtmp.data (), w));
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<FloatMatrix>::update_piv (const FloatMatrix& u, const FloatMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (float, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          FloatColumnVector utmp = u.column (i);
          FloatColumnVector vtmp = v.column (i);
          F77_XFCN (slup1up, SLUP1UP, (m, n, l.fortran_vec (),
                                       m, r.fortran_vec (), k,
                                       ipvt.fortran_vec (),
                                       utmp.data (), vtmp.data (), w));
        }
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    template <>
    lu<ComplexMatrix>::lu (const ComplexMatrix& a)
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type a_nc = a.cols ();
      octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      Complex *tmp_data = a_fact.fortran_vec ();

      octave_idx_type info = 0;

      F77_XFCN (zgetrf, ZGETRF, (a_nr, a_nc, F77_DBLE_CMPLX_ARG (tmp_data), a_nr, pipvt, info));

      for (octave_idx_type i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<ComplexMatrix>::update (const ComplexColumnVector& u,
                               const ComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ComplexColumnVector utmp = u;
      ComplexColumnVector vtmp = v;
      F77_XFCN (zlu1up, ZLU1UP, (m, n, F77_DBLE_CMPLX_ARG (l.fortran_vec ()), m, F77_DBLE_CMPLX_ARG (r.fortran_vec ()), k,
                                 F77_DBLE_CMPLX_ARG (utmp.fortran_vec ()), F77_DBLE_CMPLX_ARG (vtmp.fortran_vec ())));
    }

    template <>
    void
    lu<ComplexMatrix>::update (const ComplexMatrix& u, const ComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          ComplexColumnVector utmp = u.column (i);
          ComplexColumnVector vtmp = v.column (i);
          F77_XFCN (zlu1up, ZLU1UP, (m, n, F77_DBLE_CMPLX_ARG (l.fortran_vec ()),
                                     m, F77_DBLE_CMPLX_ARG (r.fortran_vec ()), k,
                                     F77_DBLE_CMPLX_ARG (utmp.fortran_vec ()), F77_DBLE_CMPLX_ARG (vtmp.fortran_vec ())));
        }
    }

    template <>
    void
    lu<ComplexMatrix>::update_piv (const ComplexColumnVector& u,
                                   const ComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ComplexColumnVector utmp = u;
      ComplexColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (Complex, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (zlup1up, ZLUP1UP, (m, n, F77_DBLE_CMPLX_ARG (l.fortran_vec ()),
                                   m, F77_DBLE_CMPLX_ARG (r.fortran_vec ()), k,
                                   ipvt.fortran_vec (),
                                   F77_CONST_DBLE_CMPLX_ARG (utmp.data ()), F77_CONST_DBLE_CMPLX_ARG (vtmp.data ()), F77_DBLE_CMPLX_ARG (w)));
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<ComplexMatrix>::update_piv (const ComplexMatrix& u, const ComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (Complex, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          ComplexColumnVector utmp = u.column (i);
          ComplexColumnVector vtmp = v.column (i);
          F77_XFCN (zlup1up, ZLUP1UP, (m, n, F77_DBLE_CMPLX_ARG (l.fortran_vec ()),
                                       m, F77_DBLE_CMPLX_ARG (r.fortran_vec ()), k,
                                       ipvt.fortran_vec (),
                                       F77_CONST_DBLE_CMPLX_ARG (utmp.data ()), F77_CONST_DBLE_CMPLX_ARG (vtmp.data ()), F77_DBLE_CMPLX_ARG (w)));
        }
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    template <>
    lu<FloatComplexMatrix>::lu (const FloatComplexMatrix& a)
    {
      octave_idx_type a_nr = a.rows ();
      octave_idx_type a_nc = a.cols ();
      octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      octave_idx_type *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      FloatComplex *tmp_data = a_fact.fortran_vec ();

      octave_idx_type info = 0;

      F77_XFCN (cgetrf, CGETRF, (a_nr, a_nc, F77_CMPLX_ARG (tmp_data), a_nr, pipvt, info));

      for (octave_idx_type i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<FloatComplexMatrix>::update (const FloatComplexColumnVector& u,
                                    const FloatComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () == m && v.numel () == n)
        {
          FloatComplexColumnVector utmp = u;
          FloatComplexColumnVector vtmp = v;
          F77_XFCN (clu1up, CLU1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()), m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                     F77_CMPLX_ARG (utmp.fortran_vec ()), F77_CMPLX_ARG (vtmp.fortran_vec ())));
        }
      else
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");
    }

    template <>
    void
    lu<FloatComplexMatrix>::update (const FloatComplexMatrix& u,
                                    const FloatComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          FloatComplexColumnVector utmp = u.column (i);
          FloatComplexColumnVector vtmp = v.column (i);
          F77_XFCN (clu1up, CLU1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()),
                                     m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                     F77_CMPLX_ARG (utmp.fortran_vec ()), F77_CMPLX_ARG (vtmp.fortran_vec ())));
        }
    }

    template <>
    void
    lu<FloatComplexMatrix>::update_piv (const FloatComplexColumnVector& u,
                                        const FloatComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.numel () != m || v.numel () != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatComplexColumnVector utmp = u;
      FloatComplexColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (FloatComplex, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (clup1up, CLUP1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()),
                                   m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                   ipvt.fortran_vec (),
                                   F77_CONST_CMPLX_ARG (utmp.data ()), F77_CONST_CMPLX_ARG (vtmp.data ()), F77_CMPLX_ARG (w)));
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<FloatComplexMatrix>::update_piv (const FloatComplexMatrix& u,
                                        const FloatComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      octave_idx_type m = l.rows ();
      octave_idx_type n = r.columns ();
      octave_idx_type k = l.columns ();

      if (u.rows () != m || v.rows () != n || u.cols () != v.cols ())
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (FloatComplex, w, m);
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile octave_idx_type i = 0; i < u.cols (); i++)
        {
          FloatComplexColumnVector utmp = u.column (i);
          FloatComplexColumnVector vtmp = v.column (i);
          F77_XFCN (clup1up, CLUP1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()),
                                       m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                       ipvt.fortran_vec (),
                                       F77_CONST_CMPLX_ARG (utmp.data ()), F77_CONST_CMPLX_ARG (vtmp.data ()), F77_CMPLX_ARG (w)));
        }
      for (octave_idx_type i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    // Instantiations we need.

    template class lu<Matrix>;

    template class lu<FloatMatrix>;

    template class lu<ComplexMatrix>;

    template class lu<FloatComplexMatrix>;
  }
}