view liboctave/array/fCNDArray.cc @ 29931:7faff48840eb

prefer data over fortran_vec for read-only access to data See also the discussion here: https://octave.discourse.group/t/rename-uses-of-fortran-vec-to-data-for-clarity/1439 * Array.h (const T * Array<T>::fortran_vec (void) const): Deprecate. Change all uses to call data instead.
author John W. Eaton <jwe@octave.org>
date Fri, 30 Jul 2021 11:46:05 -0400
parents be669d935fb6
children 796f54d4ddbf
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <complex>
#include <istream>
#include <ostream>

#include "Array-util.h"
#include "f77-fcn.h"
#include "fCNDArray.h"
#include "lo-ieee.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mx-op-defs.h"
#include "mx-fcnda-fs.h"
#include "oct-fftw.h"
#include "oct-locbuf.h"

#include "bsxfun-defs.cc"

FloatComplexNDArray::FloatComplexNDArray (const charNDArray& a)
  : MArray<FloatComplex> (a.dims ())
{
  octave_idx_type n = a.numel ();
  for (octave_idx_type i = 0; i < n; i++)
    xelem (i) = static_cast<unsigned char> (a(i));
}

#if defined (HAVE_FFTW)

FloatComplexNDArray
FloatComplexNDArray::fourier (int dim) const
{
  dim_vector dv = dims ();

  if (dim > dv.ndims () || dim < 0)
    return FloatComplexNDArray ();

  octave_idx_type stride = 1;
  octave_idx_type n = dv(dim);

  for (int i = 0; i < dim; i++)
    stride *= dv(i);

  octave_idx_type howmany = numel () / dv(dim);
  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
  octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride);
  octave_idx_type dist = (stride == 1 ? n : 1);

  const FloatComplex *in (data ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  // Need to be careful here about the distance between fft's
  for (octave_idx_type k = 0; k < nloop; k++)
    octave::fftw::fft (in + k * stride * n, out + k * stride * n,
                       n, howmany, stride, dist);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourier (int dim) const
{
  dim_vector dv = dims ();

  if (dim > dv.ndims () || dim < 0)
    return FloatComplexNDArray ();

  octave_idx_type stride = 1;
  octave_idx_type n = dv(dim);

  for (int i = 0; i < dim; i++)
    stride *= dv(i);

  octave_idx_type howmany = numel () / dv(dim);
  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
  octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride);
  octave_idx_type dist = (stride == 1 ? n : 1);

  const FloatComplex *in (data ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  // Need to be careful here about the distance between fft's
  for (octave_idx_type k = 0; k < nloop; k++)
    octave::fftw::ifft (in + k * stride * n, out + k * stride * n,
                        n, howmany, stride, dist);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::fourier2d (void) const
{
  dim_vector dv = dims ();
  if (dv.ndims () < 2)
    return FloatComplexNDArray ();

  dim_vector dv2 (dv(0), dv(1));
  const FloatComplex *in = data ();
  FloatComplexNDArray retval (dv);
  FloatComplex *out = retval.fortran_vec ();
  octave_idx_type howmany = numel () / dv(0) / dv(1);
  octave_idx_type dist = dv(0) * dv(1);

  for (octave_idx_type i=0; i < howmany; i++)
    octave::fftw::fftNd (in + i*dist, out + i*dist, 2, dv2);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourier2d (void) const
{
  dim_vector dv = dims ();
  if (dv.ndims () < 2)
    return FloatComplexNDArray ();

  dim_vector dv2 (dv(0), dv(1));
  const FloatComplex *in = data ();
  FloatComplexNDArray retval (dv);
  FloatComplex *out = retval.fortran_vec ();
  octave_idx_type howmany = numel () / dv(0) / dv(1);
  octave_idx_type dist = dv(0) * dv(1);

  for (octave_idx_type i=0; i < howmany; i++)
    octave::fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::fourierNd (void) const
{
  dim_vector dv = dims ();
  int rank = dv.ndims ();

  const FloatComplex *in (data ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  octave::fftw::fftNd (in, out, rank, dv);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourierNd (void) const
{
  dim_vector dv = dims ();
  int rank = dv.ndims ();

  const FloatComplex *in (data ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  octave::fftw::ifftNd (in, out, rank, dv);

  return retval;
}

#else

FloatComplexNDArray
FloatComplexNDArray::fourier (int dim) const
{
  octave_unused_parameter (dim);

  (*current_liboctave_error_handler)
    ("support for FFTW was unavailable or disabled when liboctave was built");

  return FloatComplexNDArray ();
}

FloatComplexNDArray
FloatComplexNDArray::ifourier (int dim) const
{
  octave_unused_parameter (dim);

  (*current_liboctave_error_handler)
    ("support for FFTW was unavailable or disabled when liboctave was built");

  return FloatComplexNDArray ();
}

FloatComplexNDArray
FloatComplexNDArray::fourier2d (void) const
{
  (*current_liboctave_error_handler)
    ("support for FFTW was unavailable or disabled when liboctave was built");

  return FloatComplexNDArray ();
}

FloatComplexNDArray
FloatComplexNDArray::ifourier2d (void) const
{
  (*current_liboctave_error_handler)
    ("support for FFTW was unavailable or disabled when liboctave was built");

  return FloatComplexNDArray ();
}

FloatComplexNDArray
FloatComplexNDArray::fourierNd (void) const
{
  (*current_liboctave_error_handler)
    ("support for FFTW was unavailable or disabled when liboctave was built");

  return FloatComplexNDArray ();
}

FloatComplexNDArray
FloatComplexNDArray::ifourierNd (void) const
{
  (*current_liboctave_error_handler)
    ("support for FFTW was unavailable or disabled when liboctave was built");

  return FloatComplexNDArray ();
}

#endif

// unary operations

boolNDArray
FloatComplexNDArray::operator ! (void) const
{
  if (any_element_is_nan ())
    octave::err_nan_to_logical_conversion ();

  return do_mx_unary_op<bool, FloatComplex> (*this, mx_inline_not);
}

// FIXME: this is not quite the right thing.

bool
FloatComplexNDArray::any_element_is_nan (void) const
{
  return do_mx_check<FloatComplex> (*this, mx_inline_any_nan);
}

bool
FloatComplexNDArray::any_element_is_inf_or_nan (void) const
{
  return ! do_mx_check<FloatComplex> (*this, mx_inline_all_finite);
}

// Return true if no elements have imaginary components.

bool
FloatComplexNDArray::all_elements_are_real (void) const
{
  return do_mx_check<FloatComplex> (*this, mx_inline_all_real);
}

// Return nonzero if any element of CM has a non-integer real or
// imaginary part.  Also extract the largest and smallest (real or
// imaginary) values and return them in MAX_VAL and MIN_VAL.

bool
FloatComplexNDArray::all_integers (float& max_val, float& min_val) const
{
  octave_idx_type nel = numel ();

  if (nel > 0)
    {
      FloatComplex val = elem (0);

      float r_val = val.real ();
      float i_val = val.imag ();

      max_val = r_val;
      min_val = r_val;

      if (i_val > max_val)
        max_val = i_val;

      if (i_val < max_val)
        min_val = i_val;
    }
  else
    return false;

  for (octave_idx_type i = 0; i < nel; i++)
    {
      FloatComplex val = elem (i);

      float r_val = val.real ();
      float i_val = val.imag ();

      if (r_val > max_val)
        max_val = r_val;

      if (i_val > max_val)
        max_val = i_val;

      if (r_val < min_val)
        min_val = r_val;

      if (i_val < min_val)
        min_val = i_val;

      if (octave::math::x_nint (r_val) != r_val
          || octave::math::x_nint (i_val) != i_val)
        return false;
    }

  return true;
}

bool
FloatComplexNDArray::too_large_for_float (void) const
{
  return false;
}

boolNDArray
FloatComplexNDArray::all (int dim) const
{
  return do_mx_red_op<bool, FloatComplex> (*this, dim, mx_inline_all);
}

boolNDArray
FloatComplexNDArray::any (int dim) const
{
  return do_mx_red_op<bool, FloatComplex> (*this, dim, mx_inline_any);
}

FloatComplexNDArray
FloatComplexNDArray::cumprod (int dim) const
{
  return do_mx_cum_op<FloatComplex, FloatComplex> (*this, dim,
                                                   mx_inline_cumprod);
}

FloatComplexNDArray
FloatComplexNDArray::cumsum (int dim) const
{
  return do_mx_cum_op<FloatComplex, FloatComplex> (*this, dim,
                                                   mx_inline_cumsum);
}

FloatComplexNDArray
FloatComplexNDArray::prod (int dim) const
{
  return do_mx_red_op<FloatComplex, FloatComplex> (*this, dim, mx_inline_prod);
}

ComplexNDArray
FloatComplexNDArray::dprod (int dim) const
{
  return do_mx_red_op<Complex, FloatComplex> (*this, dim, mx_inline_dprod);
}

FloatComplexNDArray
FloatComplexNDArray::sum (int dim) const
{
  return do_mx_red_op<FloatComplex, FloatComplex> (*this, dim, mx_inline_sum);
}

ComplexNDArray
FloatComplexNDArray::dsum (int dim) const
{
  return do_mx_red_op<Complex, FloatComplex> (*this, dim, mx_inline_dsum);
}

FloatComplexNDArray
FloatComplexNDArray::sumsq (int dim) const
{
  return do_mx_red_op<float, FloatComplex> (*this, dim, mx_inline_sumsq);
}

FloatComplexNDArray
FloatComplexNDArray::diff (octave_idx_type order, int dim) const
{
  return do_mx_diff_op<FloatComplex> (*this, dim, order, mx_inline_diff);
}

FloatComplexNDArray
FloatComplexNDArray::concat (const FloatComplexNDArray& rb,
                             const Array<octave_idx_type>& ra_idx)
{
  if (rb.numel () > 0)
    insert (rb, ra_idx);
  return *this;
}

FloatComplexNDArray
FloatComplexNDArray::concat (const FloatNDArray& rb,
                             const Array<octave_idx_type>& ra_idx)
{
  FloatComplexNDArray tmp (rb);
  if (rb.numel () > 0)
    insert (tmp, ra_idx);
  return *this;
}

FloatComplexNDArray
concat (NDArray& ra, FloatComplexNDArray& rb,
        const Array<octave_idx_type>& ra_idx)
{
  FloatComplexNDArray retval (ra);
  if (rb.numel () > 0)
    retval.insert (rb, ra_idx);
  return retval;
}

static const FloatComplex FloatComplex_NaN_result (octave::numeric_limits<float>::NaN (),
                                                   octave::numeric_limits<float>::NaN ());

FloatComplexNDArray
FloatComplexNDArray::max (int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, dim, mx_inline_max);
}

FloatComplexNDArray
FloatComplexNDArray::max (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, idx_arg, dim, mx_inline_max);
}

FloatComplexNDArray
FloatComplexNDArray::min (int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, dim, mx_inline_min);
}

FloatComplexNDArray
FloatComplexNDArray::min (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, idx_arg, dim, mx_inline_min);
}

FloatComplexNDArray
FloatComplexNDArray::cummax (int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, dim, mx_inline_cummax);
}

FloatComplexNDArray
FloatComplexNDArray::cummax (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, idx_arg, dim,
                                           mx_inline_cummax);
}

FloatComplexNDArray
FloatComplexNDArray::cummin (int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, dim, mx_inline_cummin);
}

FloatComplexNDArray
FloatComplexNDArray::cummin (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, idx_arg, dim,
                                           mx_inline_cummin);
}

FloatNDArray
FloatComplexNDArray::abs (void) const
{
  return do_mx_unary_map<float, FloatComplex, std::abs> (*this);
}

boolNDArray
FloatComplexNDArray::isnan (void) const
{
  return do_mx_unary_map<bool, FloatComplex, octave::math::isnan> (*this);
}

boolNDArray
FloatComplexNDArray::isinf (void) const
{
  return do_mx_unary_map<bool, FloatComplex, octave::math::isinf> (*this);
}

boolNDArray
FloatComplexNDArray::isfinite (void) const
{
  return do_mx_unary_map<bool, FloatComplex, octave::math::isfinite> (*this);
}

FloatComplexNDArray
conj (const FloatComplexNDArray& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float>> (a);
}

FloatComplexNDArray&
FloatComplexNDArray::insert (const NDArray& a,
                             octave_idx_type r, octave_idx_type c)
{
  dim_vector a_dv = a.dims ();
  dim_vector dv = dims ();

  int n = a_dv.ndims ();

  if (n == dv.ndims ())
    {
      Array<octave_idx_type> a_ra_idx (dim_vector (a_dv.ndims (), 1), 0);

      a_ra_idx.elem (0) = r;
      a_ra_idx.elem (1) = c;

      for (int i = 0; i < n; i++)
        {
          if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i))
            (*current_liboctave_error_handler)
              ("Array<T>::insert: range error for insert");
        }

      a_ra_idx.elem (0) = 0;
      a_ra_idx.elem (1) = 0;

      octave_idx_type n_elt = a.numel ();

      // IS make_unique () NECESSARY HERE?

      for (octave_idx_type i = 0; i < n_elt; i++)
        {
          Array<octave_idx_type> ra_idx = a_ra_idx;

          ra_idx.elem (0) = a_ra_idx(0) + r;
          ra_idx.elem (1) = a_ra_idx(1) + c;

          elem (ra_idx) = a.elem (a_ra_idx);

          increment_index (a_ra_idx, a_dv);
        }
    }
  else
    (*current_liboctave_error_handler)
      ("Array<T>::insert: invalid indexing operation");

  return *this;
}

FloatComplexNDArray&
FloatComplexNDArray::insert (const FloatComplexNDArray& a,
                             octave_idx_type r, octave_idx_type c)
{
  Array<FloatComplex>::insert (a, r, c);
  return *this;
}

FloatComplexNDArray&
FloatComplexNDArray::insert (const FloatComplexNDArray& a,
                             const Array<octave_idx_type>& ra_idx)
{
  Array<FloatComplex>::insert (a, ra_idx);
  return *this;
}

void
FloatComplexNDArray::increment_index (Array<octave_idx_type>& ra_idx,
                                      const dim_vector& dimensions,
                                      int start_dimension)
{
  ::increment_index (ra_idx, dimensions, start_dimension);
}

octave_idx_type
FloatComplexNDArray::compute_index (Array<octave_idx_type>& ra_idx,
                                    const dim_vector& dimensions)
{
  return ::compute_index (ra_idx, dimensions);
}

FloatComplexNDArray
FloatComplexNDArray::diag (octave_idx_type k) const
{
  return MArray<FloatComplex>::diag (k);
}

FloatComplexNDArray
FloatComplexNDArray::diag (octave_idx_type m, octave_idx_type n) const
{
  return MArray<FloatComplex>::diag (m, n);
}

// This contains no information on the array structure !!!
std::ostream&
operator << (std::ostream& os, const FloatComplexNDArray& a)
{
  octave_idx_type nel = a.numel ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      os << ' ';
      octave::write_value<Complex> (os, a.elem (i));
      os << "\n";
    }
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexNDArray& a)
{
  octave_idx_type nel = a.numel ();

  if (nel > 0)
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < nel; i++)
        {
          tmp = octave::read_value<FloatComplex> (is);
          if (is)
            a.elem (i) = tmp;
          else
            return is;
        }
    }

  return is;
}

MINMAX_FCNS (FloatComplexNDArray, FloatComplex)

NDS_CMP_OPS (FloatComplexNDArray, FloatComplex)
NDS_BOOL_OPS (FloatComplexNDArray, FloatComplex)

SND_CMP_OPS (FloatComplex, FloatComplexNDArray)
SND_BOOL_OPS (FloatComplex, FloatComplexNDArray)

NDND_CMP_OPS (FloatComplexNDArray, FloatComplexNDArray)
NDND_BOOL_OPS (FloatComplexNDArray, FloatComplexNDArray)

FloatComplexNDArray& operator *= (FloatComplexNDArray& a, float s)
{
  if (a.is_shared ())
    a = a * s;
  else
    do_ms_inplace_op<FloatComplex, float> (a, s, mx_inline_mul2);
  return a;
}

FloatComplexNDArray& operator /= (FloatComplexNDArray& a, float s)
{
  if (a.is_shared ())
    a = a / s;
  else
    do_ms_inplace_op<FloatComplex, float> (a, s, mx_inline_div2);
  return a;
}

BSXFUN_STDOP_DEFS_MXLOOP (FloatComplexNDArray)
BSXFUN_STDREL_DEFS_MXLOOP (FloatComplexNDArray)

BSXFUN_OP_DEF_MXLOOP (pow, FloatComplexNDArray, mx_inline_pow)