view scripts/optimization/glpk.m @ 31347:800eb86438cc stable

glpk.m: Avoid using isfinite on potentially sparse input. * scripts/optimization/glpk.m: Sparse input to this function is likely mostly finite. Avoid using "isfinite" which might cause out of memory errors for sparsily populated input. Use "isinf" and "isnan" instead.
author Markus Mützel <markus.muetzel@gmx.de>
date Wed, 26 Oct 2022 18:56:06 +0200
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 2005-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {[@var{xopt}, @var{fmin}, @var{errnum}, @var{extra}] =} glpk (@var{c}, @var{A}, @var{b}, @var{lb}, @var{ub}, @var{ctype}, @var{vartype}, @var{sense}, @var{param})
## Solve a linear program using the GNU @sc{glpk} library.
##
## Given three arguments, @code{glpk} solves the following standard LP:
## @tex
## $$
##   \min_x C^T x
## $$
## @end tex
## @ifnottex
##
## @example
## min C'*x
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
##   Ax = b \qquad x \geq 0
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## A*x  = b
##   x >= 0
## @end group
## @end example
##
## @end ifnottex
## but may also solve problems of the form
## @tex
## $$
##   [ \min_x | \max_x ] C^T x
## $$
## @end tex
## @ifnottex
##
## @example
## [ min | max ] C'*x
## @end example
##
## @end ifnottex
## subject to
## @tex
## $$
##  Ax [ = | \leq | \geq ] b \qquad LB \leq x \leq UB
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## A*x [ "=" | "<=" | ">=" ] b
##   x >= LB
##   x <= UB
## @end group
## @end example
##
## @end ifnottex
##
## Input arguments:
##
## @table @var
## @item c
## A column array containing the objective function coefficients.
##
## @item A
## A matrix containing the constraints coefficients.
##
## @item b
## A column array containing the right-hand side value for each constraint in
## the constraint matrix.
##
## @item lb
## An array containing the lower bound on each of the variables.  If @var{lb}
## is not supplied, the default lower bound for the variables is zero.
##
## @item ub
## An array containing the upper bound on each of the variables.  If @var{ub}
## is not supplied, the default upper bound is assumed to be infinite.
##
## @item ctype
## An array of characters containing the sense of each constraint in the
## constraint matrix.  Each element of the array may be one of the following
## values
##
## @table @asis
## @item @qcode{"F"}
## A free (unbounded) constraint (the constraint is ignored).
##
## @item @qcode{"U"}
## An inequality constraint with an upper bound (@code{A(i,:)*x <= b(i)}).
##
## @item @qcode{"S"}
## An equality constraint (@code{A(i,:)*x = b(i)}).
##
## @item @qcode{"L"}
## An inequality with a lower bound (@code{A(i,:)*x >= b(i)}).
##
## @item @qcode{"D"}
## An inequality constraint with both upper and lower bounds
## (@code{A(i,:)*x >= -b(i)}) @emph{and} (@code{A(i,:)*x <= b(i)}).
## @end table
##
## @item vartype
## A column array containing the types of the variables.
##
## @table @asis
## @item @qcode{"C"}
## A continuous variable.
##
## @item @qcode{"I"}
## An integer variable.
## @end table
##
## @item sense
## If @var{sense} is 1, the problem is a minimization.  If @var{sense} is -1,
## the problem is a maximization.  The default value is 1.
##
## @item param
## A structure containing the following parameters used to define the
## behavior of solver.  Missing elements in the structure take on default
## values, so you only need to set the elements that you wish to change from
## the default.
##
## Integer parameters:
##
## @table @code
## @item msglev (default: 1)
## Level of messages output by solver routines:
##
## @table @asis
## @item 0 (@w{@code{GLP_MSG_OFF}})
## No output.
##
## @item 1 (@w{@code{GLP_MSG_ERR}})
## Error and warning messages only.
##
## @item 2 (@w{@code{GLP_MSG_ON}})
## Normal output.
##
## @item 3 (@w{@code{GLP_MSG_ALL}})
## Full output (includes informational messages).
## @end table
##
## @item scale (default: 16)
## Scaling option.  The values can be combined with the bitwise OR operator and
## may be the following:
##
## @table @asis
## @item 1 (@w{@code{GLP_SF_GM}})
## Geometric mean scaling.
##
## @item 16 (@w{@code{GLP_SF_EQ}})
## Equilibration scaling.
##
## @item 32 (@w{@code{GLP_SF_2N}})
## Round scale factors to power of two.
##
## @item 64 (@w{@code{GLP_SF_SKIP}})
## Skip if problem is well scaled.
## @end table
##
## Alternatively, a value of 128 (@w{@env{GLP_SF_AUTO}}) may be also
## specified, in which case the routine chooses the scaling options
## automatically.
##
## @item dual (default: 1)
## Simplex method option:
##
## @table @asis
## @item 1 (@w{@code{GLP_PRIMAL}})
## Use two-phase primal simplex.
##
## @item 2 (@w{@code{GLP_DUALP}})
## Use two-phase dual simplex, and if it fails, switch to the primal simplex.
##
## @item 3 (@w{@code{GLP_DUAL}})
## Use two-phase dual simplex.
## @end table
##
## @item price (default: 34)
## Pricing option (for both primal and dual simplex):
##
## @table @asis
## @item 17 (@w{@code{GLP_PT_STD}})
## Textbook pricing.
##
## @item 34 (@w{@code{GLP_PT_PSE}})
## Steepest edge pricing.
## @end table
##
## @item itlim (default: intmax)
## Simplex iterations limit.  It is decreased by one each time when one simplex
## iteration has been performed, and reaching zero value signals the solver to
## stop the search.
##
## @item outfrq (default: 200)
## Output frequency, in iterations.  This parameter specifies how frequently
## the solver sends information about the solution to the standard output.
##
## @item branch (default: 4)
## Branching technique option (for MIP only):
##
## @table @asis
## @item 1 (@w{@code{GLP_BR_FFV}})
## First fractional variable.
##
## @item 2 (@w{@code{GLP_BR_LFV}})
## Last fractional variable.
##
## @item 3 (@w{@code{GLP_BR_MFV}})
## Most fractional variable.
##
## @item 4 (@w{@code{GLP_BR_DTH}})
## Heuristic by @nospell{Driebeck and Tomlin}.
##
## @item 5 (@w{@code{GLP_BR_PCH}})
## Hybrid @nospell{pseudocost} heuristic.
## @end table
##
## @item btrack (default: 4)
## Backtracking technique option (for MIP only):
##
## @table @asis
## @item 1 (@w{@code{GLP_BT_DFS}})
## Depth first search.
##
## @item 2 (@w{@code{GLP_BT_BFS}})
## Breadth first search.
##
## @item 3 (@w{@code{GLP_BT_BLB}})
## Best local bound.
##
## @item 4 (@w{@code{GLP_BT_BPH}})
## Best projection heuristic.
## @end table
##
## @item presol (default: 1)
## If this flag is set, the simplex solver uses the built-in LP presolver.
## Otherwise the LP presolver is not used.
##
## @item lpsolver (default: 1)
## Select which solver to use.  If the problem is a MIP problem this flag
## will be ignored.
##
## @table @asis
## @item 1
## Revised simplex method.
##
## @item 2
## Interior point method.
## @end table
##
## @item rtest (default: 34)
## Ratio test technique:
##
## @table @asis
## @item 17 (@w{@code{GLP_RT_STD}})
## Standard ("textbook").
##
## @item 34 (@w{@code{GLP_RT_HAR}})
## Harris' two-pass ratio test.
## @end table
##
## @item tmlim (default: intmax)
## Searching time limit, in milliseconds.
##
## @item outdly (default: 0)
## Output delay, in seconds.  This parameter specifies how long the solver
## should delay sending information about the solution to the standard output.
##
## @item save (default: 0)
## If this parameter is nonzero, save a copy of the problem in @nospell{CPLEX}
## LP format to the file @file{"outpb.lp"}.  There is currently no way to
## change the name of the output file.
## @end table
##
## Real parameters:
##
## @table @code
## @item tolbnd (default: 1e-7)
## Relative tolerance used to check if the current basic solution is primal
## feasible.  It is not recommended that you change this parameter unless you
## have a detailed understanding of its purpose.
##
## @item toldj (default: 1e-7)
## Absolute tolerance used to check if the current basic solution is dual
## feasible.  It is not recommended that you change this parameter unless you
## have a detailed understanding of its purpose.
##
## @item tolpiv (default: 1e-10)
## Relative tolerance used to choose eligible pivotal elements of the simplex
## table.  It is not recommended that you change this parameter unless you have
## a detailed understanding of its purpose.
##
## @item objll (default: -DBL_MAX)
## Lower limit of the objective function.  If the objective function reaches
## this limit and continues decreasing, the solver stops the search.  This
## parameter is used in the dual simplex method only.
##
## @item objul (default: +DBL_MAX)
## Upper limit of the objective function.  If the objective function reaches
## this limit and continues increasing, the solver stops the search.  This
## parameter is used in the dual simplex only.
##
## @item tolint (default: 1e-5)
## Relative tolerance used to check if the current basic solution is integer
## feasible.  It is not recommended that you change this parameter unless you
## have a detailed understanding of its purpose.
##
## @item tolobj (default: 1e-7)
## Relative tolerance used to check if the value of the objective function is
## not better than in the best known integer feasible solution.  It is not
## recommended that you change this parameter unless you have a detailed
## understanding of its purpose.
## @end table
## @end table
##
## Output values:
##
## @table @var
## @item xopt
## The optimizer (the value of the decision variables at the optimum).
##
## @item fopt
## The optimum value of the objective function.
##
## @item errnum
## Error code.
##
## @table @asis
## @item 0
## No error.
##
## @item 1 (@w{@code{GLP_EBADB}})
## Invalid basis.
##
## @item 2 (@w{@code{GLP_ESING}})
## Singular matrix.
##
## @item 3 (@w{@code{GLP_ECOND}})
## Ill-conditioned matrix.
##
## @item 4 (@w{@code{GLP_EBOUND}})
## Invalid bounds.
##
## @item 5 (@w{@code{GLP_EFAIL}})
## Solver failed.
##
## @item 6 (@w{@code{GLP_EOBJLL}})
## Objective function lower limit reached.
##
## @item 7 (@w{@code{GLP_EOBJUL}})
## Objective function upper limit reached.
##
## @item 8 (@w{@code{GLP_EITLIM}})
## Iterations limit exhausted.
##
## @item 9 (@w{@code{GLP_ETMLIM}})
## Time limit exhausted.
##
## @item 10 (@w{@code{GLP_ENOPFS}})
## No primal feasible solution.
##
## @item 11 (@w{@code{GLP_ENODFS}})
## No dual feasible solution.
##
## @item 12 (@w{@code{GLP_EROOT}})
## Root LP optimum not provided.
##
## @item 13 (@w{@code{GLP_ESTOP}})
## Search terminated by application.
##
## @item 14 (@w{@code{GLP_EMIPGAP}})
## Relative MIP gap tolerance reached.
##
## @item 15 (@w{@code{GLP_ENOFEAS}})
## No primal/dual feasible solution.
##
## @item 16 (@w{@code{GLP_ENOCVG}})
## No convergence.
##
## @item 17 (@w{@code{GLP_EINSTAB}})
## Numerical instability.
##
## @item 18 (@w{@code{GLP_EDATA}})
## Invalid data.
##
## @item 19 (@w{@code{GLP_ERANGE}})
## Result out of range.
## @end table
##
## @item extra
## A data structure containing the following fields:
##
## @table @code
## @item lambda
## Dual variables.
##
## @item redcosts
## Reduced Costs.
##
## @item time
## Time (in seconds) used for solving LP/MIP problem.
##
## @item status
## Status of the optimization.
##
## @table @asis
## @item 1 (@w{@code{GLP_UNDEF}})
## Solution status is undefined.
##
## @item 2 (@w{@code{GLP_FEAS}})
## Solution is feasible.
##
## @item 3 (@w{@code{GLP_INFEAS}})
## Solution is infeasible.
##
## @item 4 (@w{@code{GLP_NOFEAS}})
## Problem has no feasible solution.
##
## @item 5 (@w{@code{GLP_OPT}})
## Solution is optimal.
##
## @item 6 (@w{@code{GLP_UNBND}})
## Problem has no unbounded solution.
## @end table
## @end table
## @end table
##
## Example:
##
## @example
## @group
## c = [10, 6, 4]';
## A = [ 1, 1, 1;
##      10, 4, 5;
##       2, 2, 6];
## b = [100, 600, 300]';
## lb = [0, 0, 0]';
## ub = [];
## ctype = "UUU";
## vartype = "CCC";
## s = -1;
##
## param.msglev = 1;
## param.itlim = 100;
##
## [xmin, fmin, status, extra] = ...
##    glpk (c, A, b, lb, ub, ctype, vartype, s, param);
## @end group
## @end example
## @end deftypefn

function [xopt, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, sense, param)

  ## If there is no input output the version and syntax
  if (nargin < 3)
    print_usage ();
  endif

   if (! isvector (c) || iscomplex (c) || ischar (c) || any (isinf (c))
       || any (isnan (c)))
     error ("glpk: C must be a real vector with finite values");
  endif
  nx = length (c);
  ## Force column vector.
  c = c(:);

  ## 2) Matrix constraint

  if (isempty (A))
    error ("glpk: A cannot be an empty matrix");
  endif
  if (! isreal (A))
    error ("glpk: A must be real valued, not %s", typeinfo (A));
  endif
  if (any (isinf (A(:))) || any (isnan (A(:))))
    error ("glpk: The values in A must be finite");
  endif

  [nc, nxa] = size (A);
  if (nxa != nx)
    error ("glpk: A must be %d-by-%d, not %d-by-%d",
           nc, nx, rows (A), columns (A));
  endif

  ## 3) RHS

  if (isempty (b))
    error ("glpk: B cannot be an empty vector");
  endif
  if (! isreal (b) || length (b) != nc)
    error ("glpk: B must be a real-valued %d-by-1 vector", nc);
  endif
  if (any (! isfinite (b(:))))
    error ("glpk: The values in B must be finite");
  endif

  ## 4) Vector with the lower bound of each variable

  if (nargin > 3)
    if (isempty (lb))
      lb = zeros (nx, 1);
    elseif (! isreal (lb) || all (size (lb) > 1) || length (lb) != nx
            || any (isnan (lb)))
      error ("glpk: LB must be a real-valued %d-by-1 column vector", nx);
    endif
  else
    lb = zeros (nx, 1);
  endif

  ## 5) Vector with the upper bound of each variable

  if (nargin > 4)
    if (isempty (ub))
      ub = Inf (nx, 1);
    elseif (! isreal (ub) || all (size (ub) > 1) || length (ub) != nx
            || any (isnan (ub)))
      error ("glpk: UB must be a real-valued %d-by-1 column vector", nx);
    endif
  else
    ub = Inf (nx, 1);
  endif

  ## 6) Sense of each constraint

  if (nargin > 5)
    if (isempty (ctype))
      ctype = repmat ("S", nc, 1);
    elseif (! ischar (ctype) || all (size (ctype) > 1) || length (ctype) != nc)
      error ("glpk: CTYPE must be a char vector of length %d", nc);
    elseif (! all (ctype == "F" | ctype == "U" | ctype == "S"
                   | ctype == "L" | ctype == "D"))
      error ("glpk: CTYPE must contain only F, U, S, L, or D");
    endif
  else
    ctype = repmat ("S", nc, 1);
  endif

  ## 7) Vector with the type of variables

  if (nargin > 6)
    if (isempty (vartype))
      vartype = repmat ("C", nx, 1);
    elseif (! ischar (vartype) || all (size (vartype) > 1)
            || length (vartype) != nx)
      error ("glpk: VARTYPE must be a char vector of length %d", nx);
    elseif (! all (vartype == "C" | vartype == "I"))
      error ("glpk: VARTYPE must contain only C or I");
    endif
  else
    ## As default we consider continuous vars
    vartype = repmat ("C", nx, 1);
  endif

  ## 8) Sense of optimization

  if (nargin > 7)
    if (isempty (sense))
      sense = 1;
    elseif (ischar (sense) || all (size (sense) > 1) || ! isreal (sense)
            || any (! isfinite (sense)))
      error ("glpk: SENSE must be an integer value");
    elseif (sense >= 0)
      sense = 1;
    else
      sense = -1;
    endif
  else
    sense = 1;
  endif

  ## 9) Parameters vector

  if (nargin > 8)
    if (! isstruct (param))
      error ("glpk: PARAM must be a structure");
    endif
  else
    param = struct ();
  endif

  [xopt, fmin, errnum, extra] = ...
    __glpk__ (c, A, b, lb, ub, ctype, vartype, sense, param);

endfunction


%!testif HAVE_GLPK
%! sense = -1;
%! c = [10, 6, 4]';
%! A = [1, 1, 1; 10, 4, 5; 2, 2, 6];
%! b = [100, 600, 300]';
%! ctype = ['U', 'U', 'U']';
%! lb = [0, 0, 0]';
%! ub = [];
%! vartype = ['C', 'C', 'C']';
%! param.msglev = 0;
%! param.lpsolver = 1;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%!   sense, param);
%! assert (fmin, c' * xmin);
%! for i = 1:3
%!   assert (A(i,:) * xmin <= b(i));
%! endfor

%!testif HAVE_GLPK
%! sense = 1;
%! c = [-1, -1]';
%! A = [-2, 5; 2, -2];
%! b = [5, 1]';
%! ctype = ['U', 'U']';
%! lb = [0, 0]';
%! ub = [];
%! vartype = ['I', 'I']';
%! param.msglev = 0;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%!   sense, param);
%! assert (fmin, c' * xmin);
%! for i = 1:2
%!   assert (A(i,:) * xmin <= b(i));
%! endfor


%!testif HAVE_GLPK
%! sense = 1;
%! c = [0, 0, 0, -1, -1]';
%! A = [-2, 0, 0, 1, 0; 0, 1, 0, 0, 2; 0, 0, 1, 3, 2];
%! b = [4, 12, 18]';
%! ctype = ['S', 'S', 'S']';
%! lb = [0, 0, 0, 0, 0]';
%! ub = [];
%! vartype = ['C', 'C', 'C', 'C', 'C']';
%! param.msglev = 0;
%! [xmin, fmin, errnum, extra] = glpk (c, A, b, lb, ub, ctype, vartype, ...
%!   sense, param);
%! assert (fmin, c' * xmin);
%! assert (A * xmin, b);

%!error <C .* finite values> glpk (NaN, 2, 3)
%!error <A must be finite> glpk (1, NaN, 3)
%!error <B must be finite> glpk (1, 2, NaN)
%!error <LB must be a real-valued> glpk (1, 2, 3, NaN)
%!error <UB must be a real-valued> glpk (1, 2, 3, 4, NaN)
%!error <SENSE must be .* integer> glpk (1, 2, 3, 4, 5, "F", "C", NaN)