view scripts/statistics/normalize.m @ 31379:84fa33608593

normalize.m: Use bsxfun rather than broadcasting (bug #55765) * normalize.m: Replace broadcasting with bsxfun for in "range" option and primary calculation. Add FIXME note that it can revert to broadcasting when sparse and diagonal matrix types no longer produce errors. Add BISTs for sparse and diagonal input handling and xtests for preserving sparseness.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Mon, 31 Oct 2022 16:25:46 -0400
parents d727bda73574
children fd29c7a50a78
line wrap: on
line source

########################################################################
##
## Copyright (C) 2017-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{z} =} normalize (@var{x})
## @deftypefnx {} {@var{z} =} normalize (@var{x}, @var{dim})
## @deftypefnx {} {@var{z} =} normalize (@dots{}, @var{method})
## @deftypefnx {} {@var{z} =} normalize (@dots{}, @var{method}, @var{option})
## @deftypefnx {} {@var{z} =} normalize (@dots{}, @var{scale}, @var{scaleoption}, @var{center}, @var{centeroption})
## @deftypefnx {} {[@var{z}, @var{c}, @var{s}] =} normalize (@dots{})
##
## Return a normalization of the data in @var{x} using one of several available
## scaling and centering methods.
##
## @code{normalize} by default will return the @code{zscore} of @var{x},
## defined as the number of standard deviations each element is from the mean
## of @var{x}.  This is equivalent to centering at the mean of the data and
## scaling by the standard deviation.
##
## The returned value @var{z} will have the same size as @var{x}.  The optional
## return variables @var{c} and @var{s} are the centering and scaling factors
## used in the normalization such that:
##
## @example
## @group
##   @tcode{@var{z} = (@var{x} - @var{c}) ./ @var{s}}
## @end group
## @end example
##
## If @var{x} is a vector, @code{normalize} will operate on the data in
## @var{x}.
##
## If @var{x} is a matrix, @code{normalize} will operate independently on
## each column in @var{x}.
##
## If @var{x} is an N-dimensional array, @code{normalize} will operate
## independently on the first non-singleton dimension in @var{x}.
##
## If the optional second argument @var{dim} is given, operate along this
## dimension.
##
## The optional inputs @var{method} and @var{option} can be used to specify the
## type of normalization performed on @var{x}.  Note that only the
## @option{scale} and @option{center} options may be specified together using
## any of the methods defined below.  Valid normalization methods are:
##
## @table @code
## @item zscore
## (Default) Normalizes the elements in @var{x} to the scaled distance from a
##  central value.  Valid Options:
##
##    @table @code
##    @item std
##    (Default) Data is centered at @code{mean (@var{x})} and scaled by the
##      standard deviation.
##
##    @item robust
##    Data is centered at @code{median (@var{x})} and scaled by the median
##    absolute deviation.
##    @end table
##
## @item norm
## @var{z} is the general vector norm of @var{x}, with @var{option} being the
## normalization factor @var{p} that determines the vector norm type according
## to:
## @tex
## $$Z = \left (\sum_k \left | X_k \right |^P  \right )^{1/P}$$
## @end tex
## @ifnottex
##
## @example
## @group
##   @tcode{@var{z} = [sum (abs (@var{x}) .^ @var{p})] ^ (1/@var{p})}
## @end group
## @end example
##
## @end ifnottex
## @var{p} can be any positive scalar, specific values being:
##
##    @table @code
##    @item @var{p} = 1
##    @var{x} is normalized by @code{sum (abs (@var{x}))}.
##
##    @item @var{p} = 2
##    (Default) @var{x} is normalized by the Euclidian norm, or vector
##    magnitude, of the elements.
##
##    @item @var{P} = Inf
##    @var{x} is normalized by @code{max (abs (@var{x}))}.
##    @end table
##
## @item scale
## @var{x} is scaled by a factor determined by @var{option}, which can be a
## numeric scalar or one of the following:
##
##    @table @code
##    @item std
##    (Default) @var{x} is scaled by its standard deviation.
##
##    @item mad
##    @var{x} is scaled by its median absolute deviation.
##
##    @item first
##    @var{x} is scaled by its first element.
##
##    @item iqr
##    @var{x} is scaled by its interquartile range.
##    @end table
##
## @item range
## @var{x} is scaled to fit the range specified by @var{option} as a two
## element scalar row vector.  The default range is [0, 1].
##
## @item center
## @var{x} is shifted by an amount determined by @var{option}, which can be a
## numeric scalar or one of the following:
##
##    @table @code
##    @item mean
##    (Default) @var{x} is shifted by @code{mean (@var{x})}.
##
##    @item median
##    @var{x} is shifted by @code{median (@var{x})}.
##    @end table
##
## @item medianiqr
## @var{x} is shifted by @code{median (@var{x})} and scaled by the
## interquartile range.
## @end table
##
## Known @sc{matlab} incompatibilities:
##
## @enumerate
## @item
## The option @option{DataVariables} is not yet implemented for Table class
## @var{x} inputs.
##
## @item
## Certain arrays containing NaN elements may not return @sc{matlab} compatible
## output.
## @end enumerate
##
## @seealso{zscore, iqr, norm, rescale, std, median, mean, mad}
## @end deftypefn

function [z, c, s] = normalize (x, varargin)

  ## FIXME: Until NANFLAG/OMITNAN option is implemented in std, mean, median,
  ## etc., normalize cannot efficiently reproduce some behavior with NaNs in
  ## x.  xtests added to capture this.  (See bug #50571)

  ## FIXME: When table class is implemented, remove DataVariables error line in
  ## option checking section and add DataVariables data handling switch
  ## section.

  ## Input validation
  if (nargin < 1 || nargin > 8)
    print_usage ();
  endif

  if (! isnumeric (x))
    error ("normalize: X must be a numeric vector, matrix, or array");
  endif

  if (nargin == 1)
    ## Directly handle simple 1 input case.
    [s, c] = std (x);

  else
    ## Parse input options
    dim = [];
    method = [];
    methodoption = [];
    datavariables_flag = false;
    datavar = [];
    scale_and_center_flag = false;

    vararg_idx = 1;
    ## Only second optional input can be numeric without following a method.
    if (isnumeric (varargin{1}))
      dim = varargin{1};
      ## Check for valid dimensions
      if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
        error ("normalize: DIM must be an integer and a valid dimension");
      endif
      vararg_idx++;
    endif

    ## Parse varargin to determine methods then options.
    n_varargin = nargin - 1;
    while (vararg_idx <= n_varargin)
      ## Arguments after second cannot be numeric without following a method.
      if (isnumeric (varargin{vararg_idx}))
        print_usage ();
      endif

      prop = tolower (varargin{vararg_idx});

      if (strcmp (prop, "datavariables"))
        ## FIXME: Remove error on next line and undo block comment when support
        ## for Tables is implemented.
        error ("normalize: DataVariables method not yet implemented");
        #{
        if (vararg_idx == n_varargin)
          error (["normalize: DataVariables requires a table variable", ...
                 " be specified"]);
        elseif (datavariables_flag == true)
          error ("normalize: DataVariables may only be specified once");
        else
          datavariables_flag = true;
          datavar = varargin{vararg_idx+1};
          vararg_idx++;
        endif
        #}

      else
        if (! isempty (method))
          ## Catch if a second method is passed
          if (scale_and_center_flag)
            ## if true, already specified two methods, three never possible
            error ("normalize: more than two methods specified");

          elseif (strcmp ({method, prop}, {"center", "scale"})
                  || strcmp ({method, prop}, {"scale", "center"}))
            ## Only scale and center can be called together
            scale_and_center_flag = true;
            ## scale/center order doesn't matter, avoid overwriting first one
            stored_method = method;
            method = [];
            stored_methodoption = methodoption;
            methodoption = [];
          else
            ## not scale and center, throw appropriate error
            if (any (strcmp (prop, {"zscore", "norm", "range", "scale", ...
                                    "center", "medianiqr"})))
              error ("normalize: methods '%s' and '%s' may not be combined",
                     method, prop);
            else
              error ("normalize: unknown method '%s'", prop);
            endif
          endif
        endif

        ## Determine method and whether there's an appropriate option specified
        switch (prop)
          case "zscore"
            method = "zscore";
            if (vararg_idx < n_varargin)
              nextprop = tolower (varargin{vararg_idx+1});
              if (strcmp (nextprop, "std") || strcmp (nextprop, "robust"))
                methodoption = nextprop;
                vararg_idx++;
              endif
            endif
            if (isempty (methodoption))
              methodoption = "std";
            endif

          case "norm"
            method = "norm";
            if (vararg_idx < n_varargin && isnumeric (varargin{vararg_idx+1}))
              nextprop = varargin{vararg_idx+1};
              if (isscalar (nextprop) && (nextprop > 0))
                methodoption = nextprop;
                vararg_idx++;
              else
                error (["normalize: 'norm' option must be a positive ", ...
                        "scalar or Inf"]);
              endif
            endif
            if (isempty (methodoption))
              methodoption = 2;
            endif

          case "range"
            method = "range";
            if (vararg_idx < n_varargin && isnumeric (varargin{vararg_idx+1}))
              nextprop = varargin{vararg_idx+1};
              if (any (size (nextprop) != [1 2]))
                error (["normalize: 'range' must be specified as a ", ...
                        "2-element row vector [a, b]"]);
              endif
              methodoption = nextprop;
              vararg_idx++;
            endif
            if (isempty (methodoption))
              methodoption = [0, 1];
            endif

          case "scale"
            method = "scale";
            if (vararg_idx < n_varargin)
              nextprop = tolower (varargin{vararg_idx+1});
              if (isnumeric (nextprop))
                if (! isscalar (nextprop))
                  error ("normalize: scale value must be a scalar");
                else
                  methodoption = nextprop;
                  vararg_idx++;
                endif
              elseif (any (strcmp (nextprop, {"std", "mad", "first", "iqr"})))
                methodoption = nextprop;
                vararg_idx++;
              endif
            endif

            if (isempty (methodoption))
              methodoption = 'std';
            endif

          case "center"
            method = "center";
            if (vararg_idx < n_varargin)
              nextprop = tolower (varargin{vararg_idx+1});
              if (isscalar (nextprop)
                  || any (strcmp (nextprop, {"mean", "median"})))
                methodoption = nextprop;
                vararg_idx++;
              elseif (isnumeric (nextprop))
                error ("normalize: center shift must be a scalar value");
              endif
            endif
            if (isempty (methodoption))
              methodoption = 'mean';
            endif

          case "medianiqr"
            method = "medianiqr";

          otherwise
            error ("normalize: unknown method '%s'", prop);

        endswitch
      endif

      vararg_idx++;
    endwhile

    if (scale_and_center_flag)
      method = "scaleandcenter";
    endif

    if (isempty (method))
      method = 'zscore';
      methodoption = 'std';
    endif

    if (isempty (dim))
      ## Operate on first non-singleton dimension.
      (dim = find (size (x) > 1, 1)) || (dim = 1);
    endif

    ## Perform normalization based on specified methods

    ## FIXME: DataTables option not handled below.  Fix after Table Class
    ## has been implemented.

    ## Default center/scale factors:
    c = 0;
    s = 1;

    switch (method)
      case "zscore"
        switch (methodoption)
          case "std"
            [s, c] = std (x, [], dim);
          case "robust"
            ## center/median to zero and MAD = 1
            c = median (x, dim);
            ## FIXME: Use bsxfun, rather than broadcasting, until broadcasting
            ##        supports diagonal and sparse matrices (Bugs #41441, #35787).
            s = median (abs (bsxfun (@minus, x , c)), dim);
            ## s = median (abs (x - c), dim);   # Automatic broadcasting
        endswitch

      case "norm"
        switch (methodoption)
          case 1
            s = sum (abs (x), dim);
          case Inf
            s = max (abs (x), [], dim);
          otherwise
            s = sum (abs (x) .^ methodoption, dim) .^ (1/methodoption);
        endswitch

      case "range"
        ## if any range element = 0, avoid divide by zero by replacing that
        ## range element with 1.  output will be zero+min due to x-min(x)=0.
        x_range = range (x, dim);
        x_range(x_range == 0) = 1;
        z_range = methodoption(2) - methodoption(1);
        s = x_range ./ z_range;
        c = min (x, [], dim) - (methodoption(1) .* s);

      case "scale"
        s = process_scale_option (x, dim, methodoption);

      case "center"
        c = process_center_option (x, dim, methodoption);

      case "scaleandcenter"
        ## repeats scale and center using appropriate order and info

        switch (stored_method)
          case "scale"
            ## stored info is scale, latest info is center
            center_option = methodoption;
            scale_option = stored_methodoption;

          case "center"
            ## stored info is center, latest info is scale
            center_option = stored_methodoption;
            scale_option = methodoption;
        endswitch

        s = process_scale_option (x, dim, scale_option);
        c = process_center_option (x, dim, center_option);

      case "medianiqr"
        c = median (x, dim);
        s = iqr (x, dim);

    endswitch

  endif

  ## Divide by scale factor.  If scale = 0, divide by zero = Inf, which is OK.

  ## FIXME: Use bsxfun, rather than broadcasting, until broadcasting
  ##        supports diagonal and sparse matrices (Bugs #41441, #35787).
  z = bsxfun (@rdivide, bsxfun (@minus, x , c), s);
  ## z = (x - c) ./ s;  # Automatic broadcasting

endfunction

function c = process_center_option (x, dim, center_option)

  if (isnumeric (center_option))
    c = center_option;
  else
    switch (center_option)
      case "mean"
        c = mean (x, dim);
      case "median"
        c = median (x, dim);
    endswitch
  endif

endfunction

function s = process_scale_option (x, dim, scale_option)

  warning ("off", "Octave:divide-by-zero", "local");

  if (isnumeric (scale_option))
    s = scale_option;
  else
    switch (scale_option)
      case "std"
        s = std (x, [], dim);
      case "mad"
        s = mad (x, 1, dim);
      case "first"
        dim_vector = repmat ({':'}, ndims(x), 1);
        dim_vector{dim} = 1;
        s = x(dim_vector{:});
      case "iqr"
        s = iqr (x, dim);
    endswitch
  endif

endfunction


## no method specified, using zscore & std
%!assert (normalize ([1,2,3]), [-1,0,1])
%!assert (normalize ([1,2,3], 2), [-1,0,1])
%!assert (normalize (single ([1,2,3])), single ([-1,0,1]))
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2]), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3)), [[3;-2;-1]/sqrt(7),[-1;0;1],[1;2;-3]/sqrt(7)])
%!assert (normalize (magic (3), 2), [[3 -4 1]/sqrt(13);[-1 0 1];[-1 4 -3]/sqrt(13)])

## Method: zscore, [std, robust]
%!assert (normalize ([1,2,3],"zscore","std"), [-1,0,1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"zscore","std"), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3),"zscore","std"), [[3;-2;-1]/sqrt(7),[-1;0;1],[1;2;-3]/sqrt(7)])
%!assert (normalize ([1,2,3],"zscore","robust"), [-1,0,1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"zscore","robust"), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3),"zscore","robust"), [4 -1 0; -1 0 1; 0 1 -4])

## Method: norm [1, 2, inf]
%!assert (normalize ([1,2,3],"norm",1), [1/6 1/3 1/2])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",1), [1,0,-1;0,1,0;-1,-1,1]/2)
%!assert (normalize (magic (3),"norm",1), magic(3)/15)
%!assert (normalize ([1,2,3],"norm",2), [1 2 3]./3.741657386773941, eps)
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",2), [1,0,-1;0,1,0;-1,-1,1]*(sqrt(2)/2), eps)
%!assert (normalize ([1,2,3],"norm",Inf), [1/3 2/3 1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",Inf), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3),"norm",Inf), [[8;3;4]/8,[1;5;9]/9,[6;7;2]/7])

## Method: range
%!assert (normalize ([1,2,3],"range"), [0 0.5 1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"range",[0 1]), [1,0.5,0;0.5,1,0.5;0,0,1])
%!assert (normalize (magic (3),"range",[-1 1]), [1 -1 0.6; -1 0 1; -0.6 1 -1], eps)

## Method: scale [mad first iqr number]
%!assert (normalize ([1,2,3],"scale"), [1 2 3])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","std"), [1 0 -1; 0 1 0; -1 -1 1])
%!assert (normalize (magic (3),"scale",2), (magic(3)/2))

%!assert (normalize ([1,2,3],"scale", "mad"), [1 2 3])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","mad"), [1 0 -1; 0 1 0; -1 -1 1])
%!assert (normalize (magic (3),"scale","mad"), [8 0.25 6; 3 1.25 7; 4 2.25 2])

%!assert (normalize ([1,2,3],"scale", "first"), [1 2 3])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","first"), [1 NaN 1; 0 Inf 0; -1 -Inf -1])
%!assert (normalize (magic (3),"scale","first"), [1 1 1; 3/8 5 7/6; 0.5 9 1/3])
%!assert (normalize (magic (3),2,"scale","first"), [1 1/8 3/4;1 5/3 7/3;1 9/4 0.5])
%!test
%! x = reshape (magic (4),2,2,2,2);
%! y3 = cat (4, cat (3,ones(2),[1/8 7/9;11/5 7/2]), cat (3,ones(2),[13/3 2; 4/5 1/15]));
%! y4 = cat (4, ones (2,2,2), cat (3,[3/16 2/3; 2 15/4],[6.5 12/7; 8/11 1/14] ));
%! assert (normalize (x, 3, "scale", "first"), y3);
%! assert (normalize (x, 4, "scale", "first"), y4);

%!assert (normalize ([1,2,3], "scale", "iqr"), [1 2 3]*2/3)
%!assert (normalize ([1,2,3]', "scale", "iqr"), ([1 2 3]')*2/3)
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","iqr"), [1 0 -1; 0 1 0; -1 -1 1]* 2/3, eps)
%!assert (normalize (magic (3),"scale","iqr"), [[8;3;4]/3.75,[1;5;9]/6,[6;7;2]/3.75],eps)

## Method: center [mean median number]
%!assert (normalize ([1,2,3], "center"), [-1 0 1])
%!assert (normalize ([1,2,3], 1, "center"), [0 0 0])
%!assert (normalize ([1,2,3], "center", 10), [-9 -8 -7])
%!assert (normalize ([1 2 3 10], "center", "mean"), [-3 -2 -1 6])
%!assert (normalize ([1 2 3 10], "center", "median"), [-1.5 -0.5 0.5 7.5])

## Method: medianiqr
%!assert (normalize ([1,2,3], "medianiqr"), [-1 0 1]*2/3)
%!assert (normalize ([1,2,3]', "medianiqr"), ([-1 0 1]')*2/3)
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2], "medianiqr"), [1 0 -1; 0 1 0; -1 -1 1]*2/3)
%!assert (normalize (magic (3), "medianiqr"), [8/5 -1 0; -2/5 0 2/5; 0 1 -8/5]*2/3)

## Test NaN and Inf
%!assert (normalize ([1 2 Inf], 2), [NaN, NaN, NaN])
%!assert (normalize ([1 2 3], 1), [NaN, NaN, NaN])
%!assert (normalize ([1 2 3], 3), [NaN, NaN, NaN])
%!assert (normalize (ones (3,2,2,2)), NaN (3,2,2,2))
%!assert (normalize (Inf), NaN)
%!assert (normalize (NaN), NaN)
%!assert (normalize ([Inf, NaN]), [NaN, NaN])
%!assert (normalize ([Inf, NaN]'), [NaN, NaN]')
%!assert (normalize ([Inf, Inf], 1), [NaN, NaN])
%!assert (normalize ([Inf, Inf], 2), [NaN, NaN])
%!assert (normalize ([Inf, Inf]', 1), [NaN, NaN]')
%!assert (normalize ([Inf, Inf]', 2), [NaN, NaN]')
%!assert (normalize ([1 2 NaN; NaN 3 4], 1), [NaN -1 NaN; NaN 1 NaN]*sqrt(2)/2, eps)

## Two input methods, must be scale and center
%!assert (normalize (magic(3), "scale", "center"), normalize (magic(3), "zscore"), eps)
%!assert (normalize (magic(3), "center", "scale"), normalize (magic(3), "zscore"), eps)

## Test additional outputs
%!test
%! [z, c, s] = normalize ([1, 2, 3], 2);
%! assert ({z, c, s}, {[-1 0 1], [2], [1]});
%! [z, c, s] = normalize (magic (3), "zscore", "std");
%! assert ({z, c, s}, {[[3;-2;-1]/sqrt(7),[-1;0;1],[1;2;-3]/sqrt(7)], [5 5 5], [sqrt(7) 4 sqrt(7)]});
%! [z, c, s] = normalize (magic (3), "zscore", "robust");
%! assert ({z, c, s}, {[4 -1 0; -1 0 1; 0 1 -4], [4 5 6], [1 4 1]});
%! [z, c, s] = normalize (magic (3), "norm", 1);
%! assert ({z, c, s}, {magic(3)/15 , 0, [15 15 15]});
%! [z, c, s] = normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",2);
%! assert ({z, c, s}, {[1,0,-1;0,1,0;-1,-1,1]*(sqrt(2)/2), 0, [1 1 1]*2*sqrt(2)}, eps)
%! [z, c, s] = normalize ([1 2 3], "norm", Inf);
%! assert ({z, c, s}, {[1 2 3]/3, 0, 3}, eps);
%! [z, c, s] = normalize (magic (3),"range",[-1 1]);
%! assert ({z, c, s}, {[1 -1 0.6; -1 0 1; -0.6 1 -1], [5.5 5 4.5], [2.5 4 2.5]}, eps)
%! [z, c, s] = normalize (magic (3),"scale","mad");
%! assert ({z, c, s}, {[8 0.25 6; 3 1.25 7; 4 2.25 2], 0, [1 4 1]});
%! [z, c, s] = normalize (magic (3),"scale","first");
%! assert ({z, c, s}, {[1 1 1; 3/8 5 7/6; 0.5 9 1/3],0, [8 1 6]}, eps);
%! [z, c, s] = normalize ([1,2,3]', "scale", "iqr");
%! assert ({z, c, s}, {([1 2 3]')*2/3, 0, 1.5});
%! [z, c, s] = normalize ([1,2,3], "center", 10);
%! assert ({z, c, s}, {[-9 -8 -7], 10, 1});
%! [z, c, s] = normalize ([1 2 3 10], "center", "mean");
%! assert ({z, c, s}, {[-3 -2 -1 6], 4, 1})
%! [z, c, s] = normalize ([1 2 3 10], "center", "median");
%! assert ({z, c, s}, {[-1.5 -0.5 0.5 7.5], 2.5, 1});
%! [z, c, s] = normalize (magic (3), "medianiqr");
%! assert ({z, c, s}, {[8/5 -1 0; -2/5 0 2/5; 0 1 -8/5]*2/3, [4 5 6], [3.75 6 3.75]}, eps)
%! [z, c, s] = normalize ([1 2 Inf], 2);
%! assert ({z, c, s}, {[NaN, NaN, NaN], Inf, NaN});
%! [z, c, s] = normalize (Inf);
%! assert ({z, c, s}, {NaN, Inf, NaN});

## Test sparse and diagonal inputs
%!test
%! [z, c, s] = normalize (eye (2));
%! assert (z, (sqrt(2)/2)*[1, -1; -1, 1], eps);
%! assert (c, [0.5, 0.5], eps);
%! assert (s, (sqrt(2)/2)*[1, 1], eps);
%!test
%! [z, c, s] = normalize (sparse (eye (2)));
%! assert (full (z), (sqrt(2)/2)*[1, -1; -1, 1], eps);
%! assert (full (c), [0.5, 0.5], eps);
%! assert (full (s), (sqrt(2)/2)*[1, 1], eps);
%!test
%! [z, c, s] = normalize (sparse (magic (3)), "zscore", "robust");
%! assert (full (z), [4 -1 0; -1 0 1; 0 1 -4], eps);
%! assert (full (c), [4, 5, 6], eps);
%! assert (full (s), [1, 4, 1], eps);
%!test <55765>
%! [z, c, s] = normalize (sparse (eye(2)));
%! assert (issparse (z));
%! assert (issparse (c));
%! assert (issparse (s));
%!test <55765>
%! [z, c, s] = normalize (sparse (magic (3)), "zscore", "robust");
%! assert (issparse (z));
%! assert (issparse (c));
%! assert (issparse (s));

## Matlab ignores NaNs, operating as if the vector had one less element, then
## returns the result retaining the NaN in the solution.
%!assert <50571> (normalize ([1 2 NaN], 2), [-1, 1, NaN]*sqrt(2)/2)
%!assert <50571> (normalize ([1 2 NaN; 1 2 3], 2), [[-1 1 NaN]*sqrt(2)/2; -1 0 1], eps)

## Test input validation
%!error <Invalid call> normalize ()
%!error <Invalid call> normalize (1, 2, 3)
%!error <X must be a numeric> normalize (['A'; 'B'])
%!error <DIM must be an integer> normalize (1, ones (2,2))
%!error <DIM must be an integer> normalize (1, 1.5)
%!error <DIM must be .* a valid dimension> normalize (1, 0)
%!error <more than two methods specified> normalize ([1 2 3], "scale", "center", "norm")
%!error <methods .* may not be combined> normalize ([1 2 3], "norm", "zscore")
%!error <unknown method 'foo'> normalize ([1 2 3], "norm", "foo")
%
%!error <'norm' option must be a positive scalar or Inf> normalize ([1 2 3], "norm", [1 2])
%!error <'norm' option must be a positive scalar or Inf> normalize ([1 2 3], "norm", -1)
%!error <'range' must be specified as> normalize ([1 2 3], "range", [1 2]')
%!error <'range' must be specified as> normalize ([1 2 3], "range", [1 2 3])
%!error <'range' must be specified as> normalize ([1 2 3], "range", 1)
%!error <scale value must be a scalar> normalize ([1 2 3], "scale", [1 2 3])
%!error <center shift must be a scalar value> normalize ([1 2 3], "center", [1 2])
%!error <unknown method 'foo'> normalize ([1 2 3], "foo")