view liboctave/numeric/svd.cc @ 23450:855122b993da

maint: Wrap tertiary operator in parentheses "(COND ? x : y)". * Canvas.cc, color-picker.cc, dialog.cc, marker.cc, main-window.cc, Cell.cc, __magick_read__.cc, __pchip_deriv__.cc, __qp__.cc, bsxfun.cc, call-stack.cc, cellfun.cc, data.cc, defaults.cc, det.cc, eig.cc, error.cc, file-io.cc, filter.cc, find.cc, gammainc.cc, gcd.cc, gl-render.cc, graphics.cc, graphics.in.h, help.cc, hex2num.cc, inv.cc, load-save.cc, lookup.cc, ls-mat4.cc, ls-mat5.cc, ls-oct-binary.cc, ls-oct-text.cc, lu.cc, max.cc, mex.cc, oct-hist.cc, oct-map.cc, oct-procbuf.cc, oct-stream.cc, pr-output.cc, rand.cc, regexp.cc, schur.cc, str2double.cc, strfns.cc, symtab.cc, sysdep.cc, tril.cc, variables.cc, xdiv.cc, audiodevinfo.cc, audioread.cc, colamd.cc, gzip.cc, ov-base-diag.cc, ov-base-mat.h, ov-base-scalar.h, ov-class.cc, ov-classdef.cc, ov-fcn-handle.cc, ov-range.cc, ov-range.h, ov-struct.cc, ov-usr-fcn.cc, ov.cc, octave.cc, op-class.cc, pt-eval.cc, pt-funcall.cc, pt-idx.cc, pt-jit.cc, pt-stmt.cc, version.cc, Array-util.cc, Array.cc, CDiagMatrix.cc, CMatrix.cc, CNDArray.cc, CSparse.cc, Range.cc, Sparse.cc, chNDArray.cc, dDiagMatrix.cc, dMatrix.cc, dNDArray.cc, dSparse.cc, dim-vector.cc, fCDiagMatrix.cc, fCMatrix.cc, fCNDArray.cc, fDiagMatrix.cc, fMatrix.cc, fNDArray.cc, idx-vector.cc, idx-vector.h, Faddeeva.cc, DASPK.cc, DASRT.cc, DASSL.cc, EIG.cc, fEIG.cc, gsvd.cc, lo-specfun.cc, oct-rand.cc, qr.cc, qrp.cc, randgamma.cc, schur.cc, svd.cc, Sparse-diag-op-defs.h, mx-inlines.cc, oct-env.cc, cmd-edit.cc, kpse.cc, oct-inttypes.h, oct-sort.cc: Wrap tertiary operator in parentheses "(COND ? x : y)".
author Rik <rik@octave.org>
date Thu, 27 Apr 2017 17:33:10 -0700
parents c763214a8260
children d691ed308237
line wrap: on
line source

/*

Copyright (C) 2016-2017 Carnë Draug
Copyright (C) 1994-2016 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "svd.h"

#include <cassert>
#include <algorithm>

#include "CMatrix.h"
#include "dDiagMatrix.h"
#include "fDiagMatrix.h"
#include "dMatrix.h"
#include "fCMatrix.h"
#include "fMatrix.h"
#include "lo-error.h"
#include "lo-lapack-proto.h"
#include "oct-locbuf.h"

namespace octave
{
  namespace math
  {
    template <typename T>
    T
    svd<T>::left_singular_matrix (void) const
    {
      if (m_type == svd::Type::sigma_only)
        (*current_liboctave_error_handler)
          ("svd: U not computed because type == svd::sigma_only");

      return left_sm;
    }

    template <typename T>
    T
    svd<T>::right_singular_matrix (void) const
    {
      if (m_type == svd::Type::sigma_only)
        (*current_liboctave_error_handler)
          ("svd: V not computed because type == svd::sigma_only");

      return right_sm;
    }


    // GESVD specializations

#define GESVD_REAL_STEP(f, F)                                   \
    F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobu, 1),            \
                     F77_CONST_CHAR_ARG2 (&jobv, 1),            \
                     m, n, tmp_data, m1, s_vec, u, m1, vt,      \
                     nrow_vt1, work.data (), lwork, info        \
                     F77_CHAR_ARG_LEN (1)                       \
                     F77_CHAR_ARG_LEN (1)))

#define GESVD_COMPLEX_STEP(f, F, CMPLX_ARG)             \
    F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobu, 1),    \
                     F77_CONST_CHAR_ARG2 (&jobv, 1),    \
                     m, n, CMPLX_ARG (tmp_data),        \
                     m1, s_vec, CMPLX_ARG (u), m1,      \
                     CMPLX_ARG (vt), nrow_vt1,          \
                     CMPLX_ARG (work.data ()),          \
                     lwork, rwork.data (), info         \
                     F77_CHAR_ARG_LEN (1)               \
                     F77_CHAR_ARG_LEN (1)))

    // DGESVD
    template<>
    void
    svd<Matrix>::gesvd (char& jobu, char& jobv, F77_INT m, F77_INT n,
                        double *tmp_data, F77_INT m1, double *s_vec,
                        double *u, double *vt, F77_INT nrow_vt1,
                        std::vector<double>& work, F77_INT& lwork,
                        F77_INT& info)
    {
      GESVD_REAL_STEP (dgesvd, DGESVD);

      lwork = static_cast<F77_INT> (work[0]);
      work.reserve (lwork);

      GESVD_REAL_STEP (dgesvd, DGESVD);
    }

    // SGESVD
    template<>
    void
    svd<FloatMatrix>::gesvd (char& jobu, char& jobv, F77_INT m, F77_INT n,
                             float *tmp_data, F77_INT m1, float *s_vec,
                             float *u, float *vt, F77_INT nrow_vt1,
                             std::vector<float>& work, F77_INT& lwork,
                             F77_INT& info)
    {
      GESVD_REAL_STEP (sgesvd, SGESVD);

      lwork = static_cast<F77_INT> (work[0]);
      work.reserve (lwork);

      GESVD_REAL_STEP (sgesvd, SGESVD);
    }

    // ZGESVD
    template<>
    void
    svd<ComplexMatrix>::gesvd (char& jobu, char& jobv, F77_INT m, F77_INT n,
                               Complex *tmp_data, F77_INT m1, double *s_vec,
                               Complex *u, Complex *vt, F77_INT nrow_vt1,
                               std::vector<Complex>& work, F77_INT& lwork,
                               F77_INT& info)
    {
      std::vector<double> rwork (5 * std::max (m, n));

      GESVD_COMPLEX_STEP (zgesvd, ZGESVD, F77_DBLE_CMPLX_ARG);

      lwork = static_cast<F77_INT> (work[0].real ());
      work.reserve (lwork);

      GESVD_COMPLEX_STEP (zgesvd, ZGESVD, F77_DBLE_CMPLX_ARG);
    }

    // CGESVD
    template<>
    void
    svd<FloatComplexMatrix>::gesvd (char& jobu, char& jobv, F77_INT m,
                                    F77_INT n, FloatComplex *tmp_data,
                                    F77_INT m1, float *s_vec, FloatComplex *u,
                                    FloatComplex *vt, F77_INT nrow_vt1,
                                    std::vector<FloatComplex>& work,
                                    F77_INT& lwork, F77_INT& info)
    {
      std::vector<float> rwork (5 * std::max (m, n));

      GESVD_COMPLEX_STEP (cgesvd, CGESVD, F77_CMPLX_ARG);

      lwork = static_cast<F77_INT> (work[0].real ());
      work.reserve (lwork);

      GESVD_COMPLEX_STEP (cgesvd, CGESVD, F77_CMPLX_ARG);
    }

#undef GESVD_REAL_STEP
#undef GESVD_COMPLEX_STEP


    // GESDD specializations

#define GESDD_REAL_STEP(f, F)                                           \
    F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobz, 1),                    \
                     m, n, tmp_data, m1, s_vec, u, m1, vt, nrow_vt1,    \
                     work.data (), lwork, iwork, info                   \
                     F77_CHAR_ARG_LEN (1)))

#define GESDD_COMPLEX_STEP(f, F, CMPLX_ARG)                     \
    F77_XFCN (f, F, (F77_CONST_CHAR_ARG2 (&jobz, 1), m, n,      \
                     CMPLX_ARG (tmp_data), m1,                  \
                     s_vec, CMPLX_ARG (u), m1,                  \
                     CMPLX_ARG (vt), nrow_vt1,                  \
                     CMPLX_ARG (work.data ()), lwork,           \
                     rwork.data (), iwork, info                 \
                     F77_CHAR_ARG_LEN (1)))

    // DGESDD
    template<>
    void
    svd<Matrix>::gesdd (char& jobz, F77_INT m, F77_INT n, double *tmp_data,
                        F77_INT m1, double *s_vec, double *u, double *vt,
                        F77_INT nrow_vt1, std::vector<double>& work,
                        F77_INT& lwork, F77_INT *iwork, F77_INT& info)
    {
      GESDD_REAL_STEP (dgesdd, DGESDD);

      lwork = static_cast<F77_INT> (work[0]);
      work.reserve (lwork);

      GESDD_REAL_STEP (dgesdd, DGESDD);
    }

    // SGESDD
    template<>
    void
    svd<FloatMatrix>::gesdd (char& jobz, F77_INT m, F77_INT n, float *tmp_data,
                             F77_INT m1, float *s_vec, float *u, float *vt,
                             F77_INT nrow_vt1, std::vector<float>& work,
                             F77_INT& lwork, F77_INT* iwork, F77_INT& info)
    {
      GESDD_REAL_STEP (sgesdd, SGESDD);

      lwork = static_cast<F77_INT> (work[0]);
      work.reserve (lwork);

      GESDD_REAL_STEP (sgesdd, SGESDD);
    }

    // ZGESDD
    template<>
    void
    svd<ComplexMatrix>::gesdd (char& jobz, F77_INT m, F77_INT n,
                               Complex *tmp_data, F77_INT m1, double *s_vec,
                               Complex *u, Complex *vt, F77_INT nrow_vt1,
                               std::vector<Complex>& work, F77_INT& lwork,
                               F77_INT *iwork, F77_INT& info)
    {

      F77_INT min_mn = std::min (m, n);

      F77_INT lrwork;
      if (jobz == 'N')
        lrwork = 7*min_mn;
      else
        lrwork = 5*min_mn*min_mn + 5*min_mn;

      std::vector<double> rwork (lrwork);

      GESDD_COMPLEX_STEP (zgesdd, ZGESDD, F77_DBLE_CMPLX_ARG);

      lwork = static_cast<F77_INT> (work[0].real ());
      work.reserve (lwork);

      GESDD_COMPLEX_STEP (zgesdd, ZGESDD, F77_DBLE_CMPLX_ARG);
    }

    // CGESDD
    template<>
    void
    svd<FloatComplexMatrix>::gesdd (char& jobz, F77_INT m, F77_INT n,
                                    FloatComplex *tmp_data, F77_INT m1,
                                    float *s_vec, FloatComplex *u,
                                    FloatComplex *vt, F77_INT nrow_vt1,
                                    std::vector<FloatComplex>& work,
                                    F77_INT& lwork, F77_INT *iwork,
                                    F77_INT& info)
    {
      F77_INT min_mn = std::min (m, n);
      F77_INT max_mn = std::max (m, n);

      F77_INT lrwork;
      if (jobz == 'N')
        lrwork = 5*min_mn;
      else
        lrwork = min_mn * std::max (5*min_mn+7, 2*max_mn+2*min_mn+1);
      std::vector<float> rwork (lrwork);

      GESDD_COMPLEX_STEP (cgesdd, CGESDD, F77_CMPLX_ARG);

      lwork = static_cast<F77_INT> (work[0].real ());
      work.reserve (lwork);

      GESDD_COMPLEX_STEP (cgesdd, CGESDD, F77_CMPLX_ARG);
    }

#undef GESDD_REAL_STEP
#undef GESDD_COMPLEX_STEP


    template<typename T>
    svd<T>::svd (const T& a, svd::Type type,
                 svd::Driver driver)
      : m_type (type), m_driver (driver), left_sm (), sigma (), right_sm ()
    {
      F77_INT info;

      F77_INT m = octave::to_f77_int (a.rows ());
      F77_INT n = octave::to_f77_int (a.cols ());

      if (m == 0 || n == 0)
        {
          switch (m_type)
            {
            case svd::Type::std:
              left_sm = T (m, m, 0);
              for (F77_INT i = 0; i < m; i++)
                left_sm.xelem (i, i) = 1;
              sigma = DM_T (m, n);
              right_sm = T (n, n, 0);
              for (F77_INT i = 0; i < n; i++)
                right_sm.xelem (i, i) = 1;
              break;

            case svd::Type::economy:
              left_sm = T (m, 0, 0);
              sigma = DM_T (0, 0);
              right_sm = T (0, n, 0);
              break;

            case svd::Type::sigma_only:
            default:
              sigma = DM_T (0, 1);
              break;
            }
          return;
        }

      T atmp = a;
      P *tmp_data = atmp.fortran_vec ();

      F77_INT min_mn = (m < n ? m : n);

      char jobu = 'A';
      char jobv = 'A';

      F77_INT ncol_u = m;
      F77_INT nrow_vt = n;
      F77_INT nrow_s = m;
      F77_INT ncol_s = n;

      switch (m_type)
        {
        case svd::Type::economy:
          jobu = jobv = 'S';
          ncol_u = nrow_vt = nrow_s = ncol_s = min_mn;
          break;

        case svd::Type::sigma_only:

          // Note:  for this case, both jobu and jobv should be 'N', but
          // there seems to be a bug in dgesvd from Lapack V2.0.  To
          // demonstrate the bug, set both jobu and jobv to 'N' and find
          // the singular values of [eye(3), eye(3)].  The result is
          // [-sqrt(2), -sqrt(2), -sqrt(2)].
          //
          // For Lapack 3.0, this problem seems to be fixed.

          jobu = jobv = 'N';
          ncol_u = nrow_vt = 1;
          break;

        default:
          break;
        }

      if (! (jobu == 'N' || jobu == 'O'))
        left_sm.resize (m, ncol_u);

      P *u = left_sm.fortran_vec ();

      sigma.resize (nrow_s, ncol_s);
      DM_P *s_vec = sigma.fortran_vec ();

      if (! (jobv == 'N' || jobv == 'O'))
        right_sm.resize (nrow_vt, n);

      P *vt = right_sm.fortran_vec ();

      // Query _GESVD for the correct dimension of WORK.

      F77_INT lwork = -1;

      std::vector<P> work (1);

      F77_INT m1 = std::max (m, static_cast<F77_INT> (1));
      F77_INT nrow_vt1 = std::max (nrow_vt, static_cast<F77_INT> (1));

      if (m_driver == svd::Driver::GESVD)
        gesvd (jobu, jobv, m, n, tmp_data, m1, s_vec, u, vt, nrow_vt1,
               work, lwork, info);
      else if (m_driver == svd::Driver::GESDD)
        {
          assert (jobu == jobv);
          char jobz = jobu;

          std::vector<F77_INT> iwork (8 * std::min (m, n));

          gesdd (jobz, m, n, tmp_data, m1, s_vec, u, vt, nrow_vt1,
                 work, lwork, iwork.data (), info);
        }
      else
        (*current_liboctave_error_handler) ("svd: unknown driver");

      if (! (jobv == 'N' || jobv == 'O'))
        right_sm = right_sm.hermitian ();
    }

    // Instantiations we need.

    template class svd<Matrix>;

    template class svd<FloatMatrix>;

    template class svd<ComplexMatrix>;

    template class svd<FloatComplexMatrix>;
  }
}