view scripts/general/interp2.m @ 31253:a40c0b7aa376

maint: changes to follow Octave coding conventions. * NEWS.8.md: Wrap lines to 72 chars. * LSODE-opts.in: Use two spaces after sentence ending period. * LSODE.cc: Use minimum of two spaces between code and start of comment. * MemoizedFunction.m: Change copyright date to 2022 since this is the year it was accepted into core. Don't wrap error() lines to 80 chars. Use newlines to improve readability of switch statements. Use minimum of two spaces between code and start of comment. * del2.m, integral.m, interp1.m, interp2.m, griddata.m, inpolygon.m, waitbar.m, cubehelix.m, ind2x.m, importdata.m, textread.m, logm.m, lighting.m, shading.m, xticklabels.m, yticklabels.m, zticklabels.m, colorbar.m, meshc.m, print.m, __gnuplot_draw_axes__.m, struct2hdl.m, ppval.m, ismember.m, iqr.m: Use a space between comment character '#' and start of comment. Use hyphen for adjectives describing dimensions such as "1-D". * vectorize.m, ode23s.m: Use is_function_handle() instead of "isa (x, "function_handle")" for clarity and performance. * clearAllMemoizedCaches.m: Change copyright date to 2022 since this is the year it was accepted into core. Remove input validation which is done by interpreter. Use two newlines between end of code and start of BIST tests. * memoize.m: Change copyright date to 2022 since this is the year it was accepted into core. Re-wrap documentation to 80 chars. Use is_function_handle() instead of "isa (x, "function_handle")" for clarity and performance. Use two newlines between end of code and start of BIST tests. Use semicolon for assert statements within %!test block. Re-write BIST tests for input validation. * __memoize__.m: Change copyright date to 2022 since this is the year it was accepted into core. Use spaces in for statements to improve readability. * unique.m: Add FIXME note to commented BIST test * dec2bin.m: Remove stray newline at end of file. * triplequad.m: Reduce doubly-commented BIST syntax using "#%!#" to "#%!". * delaunayn.m: Use input variable names in error() statements. Use minimum of two spaces between code and start of comment. Use hyphen for describing dimensions. Use two newlines between end of code and start of BIST tests. Update BIST tests to pass.
author Rik <rik@octave.org>
date Mon, 03 Oct 2022 18:06:55 -0700
parents 836104321759
children fd29c7a50a78
line wrap: on
line source

########################################################################
##
## Copyright (C) 2000-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{zi} =} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
## @deftypefnx {} {@var{zi} =} interp2 (@var{z}, @var{xi}, @var{yi})
## @deftypefnx {} {@var{zi} =} interp2 (@var{z}, @var{n})
## @deftypefnx {} {@var{zi} =} interp2 (@var{z})
## @deftypefnx {} {@var{zi} =} interp2 (@dots{}, @var{method})
## @deftypefnx {} {@var{zi} =} interp2 (@dots{}, @var{method}, @var{extrap})
##
## Two-dimensional interpolation.
##
## Interpolate reference data @var{x}, @var{y}, @var{z} to determine @var{zi}
## at the coordinates @var{xi}, @var{yi}.  The reference data @var{x}, @var{y}
## can be matrices, as returned by @code{meshgrid}, in which case the sizes of
## @var{x}, @var{y}, and @var{z} must be equal.  If @var{x}, @var{y} are
## vectors describing a grid then @code{length (@var{x}) == columns (@var{z})}
## and @code{length (@var{y}) == rows (@var{z})}.  In either case the input
## data must be strictly monotonic.
##
## If called without @var{x}, @var{y}, and just a single reference data matrix
## @var{z}, the 2-D region
## @code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})} is assumed.
## This saves memory if the grid is regular and the distance between points is
## not important.
##
## If called with a single reference data matrix @var{z} and a refinement
## value @var{n}, then perform interpolation over a grid where each original
## interval has been recursively subdivided @var{n} times.  This results in
## @code{2^@var{n}-1} additional points for every interval in the original
## grid.  If @var{n} is omitted a value of 1 is used.  As an example, the
## interval [0,1] with @code{@var{n}==2} results in a refined interval with
## points at [0, 1/4, 1/2, 3/4, 1].
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative.
##
## @item @qcode{"cubic"}
## Cubic interpolation using a convolution kernel function---third order
## method with smooth first derivative.
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## @var{extrap} is a scalar number.  It replaces values beyond the endpoints
## with @var{extrap}.  Note that if @var{extrap} is used, @var{method} must
## be specified as well.  If @var{extrap} is omitted and the @var{method} is
## @qcode{"spline"}, then the extrapolated values of the @qcode{"spline"} are
## used.  Otherwise the default @var{extrap} value for any other @var{method}
## is @qcode{"NA"}.
## @seealso{interp1, interp3, interpn, meshgrid}
## @end deftypefn

function ZI = interp2 (varargin)

  narginchk (1, 7);
  nargs = nargin;

  Z = X = Y = XI = YI = n = [];
  method = "linear";
  extrap = [];

  ## Check for method and extrap
  if (nargs > 1 && ischar (varargin{end-1}))
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interp2: EXTRAP must be a numeric scalar");
    endif
    extrap = varargin{end};
    method = varargin{end-1};
    nargs -= 2;
  elseif (ischar (varargin{end}))
    method = varargin{end};
    nargs -= 1;
  endif
  if (method(1) == "*")
    warning ("interp2: ignoring unsupported '*' flag to METHOD");
    method(1) = [];
  endif
  method = validatestring (method, ...
                           {"nearest", "linear", "pchip", "cubic", "spline"});

  ## Read numeric input
  switch (nargs)
    case 1
      Z = varargin{1};
      n = 1;
    case 2
      [Z, n] = deal (varargin{1:nargs});
    case 3
      [Z, XI, YI] = deal (varargin{1:nargs});
    case 5
      [X, Y, Z, XI, YI] = deal (varargin{1:nargs});
    otherwise
      print_usage ();
  endswitch

  ## Type checking
  if (! isnumeric (Z) || isscalar (Z) || ! ismatrix (Z))
    error ("interp2: Z must be a 2-D matrix");
  endif
  if (! isempty (n) && ! (isscalar (n) && n >= 0 && n == fix (n)))
    error ("interp2: N must be an integer >= 0");
  endif

  ## Define X, Y, XI, YI if needed
  [zr, zc] = size (Z);
  if (isempty (X))
    X = 1:zc;
    Y = 1:zr;
  endif
  if (! isnumeric (X) || ! isnumeric (Y))
    error ("interp2: X, Y must be numeric matrices");
  endif
  if (! isempty (n))
    ## Calculate the interleaved input vectors.
    p = 2^n;
    XI = (p:p*zc)/p;
    YI = (p:p*zr).'/p;
  endif
  if (! isnumeric (XI) || ! isnumeric (YI))
    error ("interp2: XI, YI must be numeric");
  endif

  if (isvector (X) && isvector (Y))
    X = X(:);  Y = Y(:);
  elseif (size_equal (X, Y))
    X = X(1,:).';  Y = Y(:,1);
  else
    error ("interp2: X and Y must be matrices of equal size");
  endif
  if (columns (Z) != length (X) || rows (Z) != length (Y))
    error ("interp2: X and Y size must match the dimensions of Z");
  endif
  dx = diff (X);
  if (all (dx < 0))
    X = flipud (X);
    Z = fliplr (Z);
  elseif (any (dx <= 0))
    error ("interp2: X must be strictly monotonic");
  endif
  dy = diff (Y);
  if (all (dy < 0))
    Y = flipud (Y);
    Z = flipud (Z);
  elseif (any (dy <= 0))
    error ("interp2: Y must be strictly monotonic");
  endif

  if (strcmp (method, "cubic") && (rows (Z) < 3 || columns (Z) < 3))
    warning (["interp2: cubic requires at least 3 points in each " ...
              "dimension.  Falling back to linear interpolation."]);
    method = "linear";
  endif

  if (any (strcmp (method, {"nearest", "linear", "pchip"})))

    ## If Xi and Yi are vectors of different orientation build a grid
    if ((isrow (XI) && iscolumn (YI)) || (iscolumn (XI) && isrow (YI)))
      [XI, YI] = meshgrid (XI, YI);
    elseif (! size_equal (XI, YI))
      error ("interp2: XI and YI must be matrices of equal size");
    endif

    ## if XI, YI are vectors, X and Y should share their orientation.
    if (isrow (XI))
      if (rows (X) != 1)
        X = X.';
      endif
      if (rows (Y) != 1)
        Y = Y.';
      endif
    elseif (iscolumn (XI))
      if (columns (X) != 1)
        X = X.';
      endif
      if (columns (Y) != 1)
        Y = Y.';
      endif
    endif

    xidx = lookup (X, XI, "lr");
    yidx = lookup (Y, YI, "lr");

    if (strcmp (method, "linear"))
      ## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy
      ##
      ## a-b
      ## | |
      ## c-d
      a = Z(1:(zr - 1), 1:(zc - 1));
      b = Z(1:(zr - 1), 2:zc) - a;
      c = Z(2:zr, 1:(zc - 1)) - a;
      d = Z(2:zr, 2:zc) - a - b - c;

      ## scale XI, YI values to a 1-spaced grid
      Xsc = (XI - X(xidx)) ./ (diff (X)(xidx));
      Ysc = (YI - Y(yidx)) ./ (diff (Y)(yidx));

      ## Get 2-D index.
      idx = sub2ind (size (a), yidx, xidx);
      ## Dispose of the 1-D indices at this point to save memory.
      clear xidx yidx;

      ## Apply plane equation
      ## Handle case where idx and coefficients are both vectors and resulting
      ## coeff(idx) follows orientation of coeff, rather than that of idx.
      forient = @(x) reshape (x, size (idx));
      ZI =   forient (a(idx))        ...
           + forient (b(idx)) .* Xsc ...
           + forient (c(idx)) .* Ysc ...
           + forient (d(idx)) .* Xsc.*Ysc;

    elseif (strcmp (method, "nearest"))
      ii = (XI - X(xidx) >= X(xidx + 1) - XI);
      jj = (YI - Y(yidx) >= Y(yidx + 1) - YI);
      idx = sub2ind (size (Z), yidx+jj, xidx+ii);
      ZI = Z(idx);

    elseif (strcmp (method, "pchip"))

      if (length (X) < 2 || length (Y) < 2)
        error ("interp2: pchip requires at least 2 points in each dimension");
      endif

      ## first order derivatives
      DX = __pchip_deriv__ (X, Z, 2);
      DY = __pchip_deriv__ (Y, Z, 1);
      ## Compute mixed derivatives row-wise and column-wise.  Use the average.
      DXY = (__pchip_deriv__ (X, DY, 2) + __pchip_deriv__ (Y, DX, 1)) / 2;

      ## do the bicubic interpolation
      hx = diff (X); hx = hx(xidx);
      hy = diff (Y); hy = hy(yidx);

      tx = (XI - X(xidx)) ./ hx;
      ty = (YI - Y(yidx)) ./ hy;

      ## construct the cubic hermite base functions in x, y

      ## formulas:
      ## b{1,1} =    ( 2*t.^3 - 3*t.^2     + 1);
      ## b{2,1} = h.*(   t.^3 - 2*t.^2 + t    );
      ## b{1,2} =    (-2*t.^3 + 3*t.^2        );
      ## b{2,2} = h.*(   t.^3 -   t.^2        );

      ## optimized equivalents of the above:
      t1 = tx.^2;
      t2 = tx.*t1 - t1;
      xb{2,2} = hx.*t2;
      t1 = t2 - t1;
      xb{2,1} = hx.*(t1 + tx);
      t2 += t1;
      xb{1,2} = -t2;
      xb{1,1} = t2 + 1;

      t1 = ty.^2;
      t2 = ty.*t1 - t1;
      yb{2,2} = hy.*t2;
      t1 = t2 - t1;
      yb{2,1} = hy.*(t1 + ty);
      t2 += t1;
      yb{1,2} = -t2;
      yb{1,1} = t2 + 1;

      ZI = zeros (size (XI));
      for ix = 1:2
        for iy = 1:2
          zidx = sub2ind (size (Z), yidx+(iy-1), xidx+(ix-1));
          ZI += xb{1,ix} .* yb{1,iy} .*   Z(zidx);
          ZI += xb{2,ix} .* yb{1,iy} .*  DX(zidx);
          ZI += xb{1,ix} .* yb{2,iy} .*  DY(zidx);
          ZI += xb{2,ix} .* yb{2,iy} .* DXY(zidx);
        endfor
      endfor

    endif

  else  # cubic or spline methods

    ## Check dimensions of XI and YI
    if (isvector (XI) && isvector (YI) && ! size_equal (XI, YI))
      XI = XI(:).';  YI = YI(:);
    elseif (! size_equal (XI, YI))
      error ("interp2: XI and YI must be matrices of equal size");
    endif

    if (strcmp (method, "spline"))
      if (isgriddata (XI) && isgriddata (YI.'))
        ZI = __splinen__ ({Y, X}, Z, {YI(:,1), XI(1,:)}, extrap, "spline");
      else
        error ("interp2: XI, YI must have uniform spacing ('meshgrid' format)");
      endif
      return;  # spline doesn't use extrapolation value (MATLAB compatibility)
    elseif (strcmp (method, "cubic"))
      ## reduce to vectors if interpolation points are a meshgrid
      if (size_equal (XI, YI) && all (all (XI(1, :) == XI & YI(:, 1) == YI)))
        XI = XI(1, :);
        YI = YI(:, 1);
      endif

      ## make X a row vector
      X = X.';

      ## quadratic padding + additional zeros for the special case of copying
      ## the last line (like x=1:5, xi=5, requires to have indices 6 and 7)
      row_1 = 3*Z(1, :, :) - 3*Z(2, :, :) + Z(3, :, :);
      row_end = 3*Z(end, :, :) - 3*Z(end-1, :, :) + Z(end-2, :, :);
      ZI = [3*row_1(:, 1, :) - 3*row_1(:, 2, :) + row_1(:, 3, :), ...
            row_1, ...
            3*row_1(:, end, :) - 3*row_1(:, end-1, :) + row_1(:, end-2, :), ...
            0;
            #
            3*Z(:, 1, :) - 3*Z(:, 2, :) + Z(:, 3, :), ...
            Z, ...
            3*Z(:, end, :) - 3*Z(:, end-1, :) + Z(:, end-2, :), ...
            zeros(rows (Z), 1, size (Z, 3));
            #
            3*row_end(:, 1, :) - 3*row_end(:, 2, :) + row_end(:, 3, :), ...
            row_end, ...
            3*row_end(:, end, :) - 3*row_end(:, end-1, :) + row_end(:, end-2, :), ...
            0;
            zeros(1, columns (Z) + 3, size (Z, 3))];

      ## interpolate
      if (isrow (XI) && iscolumn (YI))
        ZI = conv_interp_vec (ZI, Y, YI, @cubic, [-2, 2], 1);
        ZI = conv_interp_vec (ZI, X, XI, @cubic, [-2, 2], 2);
      else
        ZI = conv_interp_pairs (ZI, X, Y, XI, YI, @cubic, [-2, 2]);
      endif
    endif
  endif

  ## extrapolation 'extrap'
  if (isempty (extrap))
    if (iscomplex (Z))
      extrap = complex (NA, NA);
    else
      extrap = NA;
    endif
  endif

  if (X(1) < X(end))
    if (Y(1) < Y(end))
      ZI(XI < X(1,1) | XI > X(end) | YI < Y(1,1) | YI > Y(end)) = extrap;
    else
      ZI(XI < X(1) | XI > X(end) | YI < Y(end) | YI > Y(1)) = extrap;
    endif
  else
    if (Y(1) < Y(end))
      ZI(XI < X(end) | XI > X(1) | YI < Y(1) | YI > Y(end)) = extrap;
    else
      ZI(XI < X(1,end) | XI > X(1) | YI < Y(end) | YI > Y(1)) = extrap;
    endif
  endif

endfunction

function b = isgriddata (X)
  d1 = diff (X, 1, 1);
  b = ! any (d1(:) != 0);
endfunction

## cubic convolution kernel with a = -0.5 for MATLAB compatibility.
function w = cubic (h)

  absh = abs (h);
  absh01 = absh <= 1;
  absh12 = absh <= 2 & ! absh01;
  absh_sqr = absh .* absh;
  absh_cube = absh_sqr .* absh;
  w = ...  # for |h| <= 1
      (1.5 * absh_cube - 2.5 * absh_sqr + 1) .* absh01 ...
      ...  # for 1 < |h| <= 2
      + (-0.5 * absh_cube + 2.5 * absh_sqr - 4 * absh + 2) .* absh12;

endfunction

## bicubic interpolation of full matrix in one direction with vector
function out = conv_interp_vec (Z, XY, XIYI, kernel, kernel_bounds, axis)

  ## allocate output
  out_shape = size (Z);
  out_shape(axis) = length (XIYI);
  out = zeros (out_shape);

  ## get indexes and distances h
  spread = abs (XY(1) - XY(2));
  idx = lookup (XY, XIYI, "l");
  h = (XIYI - XY(idx)) / spread;
  idx += -kernel_bounds(1) - 1;  # apply padding for indexes

  ## interpolate
  for shift = kernel_bounds(1)+1 : kernel_bounds(2)
    if (axis == 1)
      out += Z(idx + shift, :) .* kernel (shift - h);
    else
      out += Z(:, idx + shift) .* kernel (shift - h);
    endif
  endfor

endfunction

## bicubic interpolation of arbitrary XI-YI-pairs
function out = conv_interp_pairs (Z, X, Y, XI, YI, kernel, kernel_bounds)

  spread_x = abs (X(1, 1) - X(1, 2));
  spread_y = abs (Y(1, 1) - Y(2, 1));
  idx_x = lookup (X, XI, "l");
  idx_y = lookup (Y, YI, "l");
  h_x = (XI - reshape (X(idx_x), size (idx_x))) / spread_x;
  h_y = (YI - reshape (Y(idx_y), size (idx_y))) / spread_y;

  # adjust indexes for padding
  idx_x += -kernel_bounds(1) - 1;
  idx_y += -kernel_bounds(1) - 1;

  shifts = kernel_bounds(1)+1 : kernel_bounds(2);
  [SX(1,1,:,:), SY(1,1,:,:)] = meshgrid (shifts, shifts);
  pixels = Z(sub2ind (size (Z), idx_y + SY, idx_x + SX));
  kernel_y = kernel (reshape (shifts, 1, 1, [], 1) - h_y);
  kernel_x = kernel (reshape (shifts, 1, 1, 1, []) - h_x);
  out_x = sum (pixels .* kernel_x, 4);
  out = sum (out_x .* kernel_y, 3);

endfunction


%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "linear"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:).';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "linear"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "nearest"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:).';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "nearest"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "pchip"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:).';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "pchip"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "cubic"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:).';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "cubic"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2];  y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "spline"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!demo
%! clf;
%! colormap ("default");
%! [x,y,A] = peaks (10);
%! x = x(1,:).';  y = y(:,1);
%! xi = linspace (min (x), max (x), 41);
%! yi = linspace (min (y), max (y), 41).';
%! mesh (xi,yi,interp2 (x,y,A,xi,yi, "spline"));
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x,y,A,"b*"); hold off;

%!shared x, y, orig, xi, yi, expected
%!test  # simple test
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x, y);
%! orig = X.^2 + Y.^3;
%! xi = [0.8, 1.2, 2.0, 1.5];
%! yi = [6.2, 4.0, 5.0, 7.1].';
%!
%! # check nearest neighbor
%! expected = ...
%!   [NA, 217, 220, 220;
%!    NA,  65,  68,  68;
%!    NA, 126, 129, 129;
%!    NA,  NA,  NA,  NA];
%! result = interp2 (x, y, orig, xi, yi, "nearest");
%! assert (result, expected);
%!
%! # check invariance of translation
%! result = interp2 (x+3, y-7, orig, xi+3, yi-7, "nearest");
%! assert (result, expected);
%!
%! # check invariance of scaling
%! result = interp2 (x*3, y*(-7), orig, xi*3, yi*(-7), "nearest");
%! assert (result, expected);
%!
%! # check interpolation with index pairs
%! result = interp2 (x, y, orig, xi(2:4), yi(1:3).', "nearest");
%! assert (result, expected(sub2ind(size(expected), 1:3, 2:4)));
%!
%! # check bilinear interpolation
%! expected = ...
%!   [NA, 243,     245.4,   243.9;
%!    NA,  65.6,    68,      66.5;
%!    NA, 126.6,   129,     127.5;
%!    NA,  NA,      NA,      NA];
%! result = interp2 (x, y, orig, xi, yi);
%! assert (result, expected, 1000*eps);
%!
%! # check invariance of translation
%! result = interp2 (x+3, y-7, orig, xi+3, yi-7);
%! assert (result, expected, 1000*eps);
%!
%! # check invariance of scaling
%! result = interp2 (x*3, y*(-7), orig, xi*3, yi*(-7));
%! assert (result, expected, 1000*eps);
%!
%! # check interpolation with index pairs
%! result = interp2 (x, y, orig, xi(2:4), yi(1:3).');
%! assert (result, expected(sub2ind(size(expected), 1:3, 2:4)), 1000*eps);
%!
%! # check spline interpolation
%! expected = ...
%!   [238.968,  239.768,  242.328,  240.578;
%!     64.64,    65.44,    68,       66.25;
%!    125.64,   126.44,   129,      127.25;
%!    358.551,  359.351,  361.911,  360.161];
%! result = interp2 (x, y, orig, xi, yi, "spline");
%! assert (result, expected, 1000*eps);
%!
%! # check invariance of translation
%! result = interp2 (x+3, y-7, orig, xi+3, yi-7, "spline");
%! assert (result, expected, 1000*eps);
%!
%! # check invariance of scaling
%! result = interp2 (x*3, y*(-7), orig, xi*3, yi*(-7), "spline");
%! assert (result, expected, 1000*eps);
%!
%!test <62133>
%! # FIXME: spline interpolation does not support index pairs, Matlab does.
%! result = interp2 (x, y, orig, xi(2:4), yi(1:3).', "spline");
%! assert (result, expected(sub2ind(size(expected), 1:3, 2:4)), 1000*eps);
%!
%!test <*61754>
%! # check bicubic interpolation
%! expected = ...
%!   [NA, 239.96,  242.52,  240.77;
%!    NA,  65.44,   68,      66.25;
%!    NA, 126.44,  129,     127.25;
%!    NA,  NA,      NA,      NA];
%! result = interp2 (x, y, orig, xi, yi, "cubic");
%! assert (result, expected, 10000*eps);
%!
%! # check invariance of translation
%! result = interp2 (x+3, y-7, orig, xi+3, yi-7, "cubic");
%! assert (result, expected, 10000*eps);
%!
%! # check invariance of scaling
%! result = interp2 (x*3, y*(-7), orig, xi*3, yi*(-7), "cubic");
%! assert (result, expected, 10000*eps);
%!
%! # check interpolation with index pairs
%! result = interp2 (x, y, orig, xi(2:4), yi(1:3).', "cubic");
%! assert (result, expected(sub2ind(size(expected), 1:3, 2:4)), 10000*eps);

## Test that interpolating a complex matrix is equivalent to interpolating its
## real and imaginary parts separately.
%!test <*61863>
%! xi = [2.5, 3.5];
%! yi = [0.5, 1.5].';
%! orig = rand (4, 3) + 1i * rand (4, 3);
%! for method = {"nearest", "linear", "pchip", "cubic", "spline"}
%!   interp_complex = interp2 (orig, xi, yi, method{1});
%!   interp_real = interp2 (real (orig), xi, yi, method{1});
%!   interp_imag = interp2 (imag (orig), xi, yi, method{1});
%!   assert (real (interp_complex), interp_real)
%!   assert (imag (interp_complex), interp_imag)
%! endfor

%!test  # 2^n refinement form
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x, y);
%! orig = X.^2 + Y.^3;
%! xi = [1:0.25:3];  yi = [4:0.25:7].';
%! expected = interp2 (x,y,orig, xi, yi);
%! result = interp2 (orig, 2);
%!
%! assert (result, expected, 10*eps);

%!test  # matrix slice
%! A = eye (4);
%! assert (interp2 (A,[1:4],[1:4]), [1,1,1,1]);

%!test  # non-gridded XI,YI
%! A = eye (4);
%! assert (interp2 (A,[1,2;3,4],[1,3;2,4]), [1,0;0,1]);

%!test  # for values outside of boundaries
%! x = [1,2,3];
%! y = [4,5,6,7];
%! [X, Y] = meshgrid (x,y);
%! orig = X.^2 + Y.^3;
%! xi = [0,4];
%! yi = [3,8].';
%! assert (interp2 (x,y,orig, xi, yi), [NA,NA;NA,NA]);
%! assert (interp2 (x,y,orig, xi, yi,"linear", 0), [0,0;0,0]);
%! assert (interp2 (x,y,orig, xi, yi,"linear", 2), [2,2;2,2]);
%! assert (interp2 (x,y,orig, xi, yi,"spline", 2), [2,2;2,2]);
%! assert (interp2 (x,y,orig, xi, yi,"linear", 0+1i), [0+1i,0+1i;0+1i,0+1i]);
%! assert (interp2 (x,y,orig, xi, yi,"spline"), [27,43;512,528]);
%! assert (interp2 (x,y,orig, xi, yi,"cubic"), [NA,NA;NA,NA]);
%! assert (interp2 (x,y,orig, xi, yi,"cubic", 2), [2,2;2,2]);

%!test  # for values at boundaries
%! A = [1,2;3,4];
%! x = [0,1];
%! y = [2,3].';
%! assert (interp2 (x,y,A,x,y,"linear"), A);
%! assert (interp2 (x,y,A,x,y,"nearest"), A);

%!test  # for Matlab-compatible rounding for 'nearest'
%! X = meshgrid (1:4);
%! assert (interp2 (X, 2.5, 2.5, "nearest"), 3);

## re-order monotonically decreasing
%!assert <*41838> (interp2 ([1 2 3], [3 2 1], magic (3), 2.5, 3), 3.5)
%!assert <*41838> (interp2 ([3 2 1], [1 2 3], magic (3), 1.5, 1), 3.5)

## Linear interpretation with vector XI doesn't lead to matrix output
%!assert <*49506> (interp2 ([2 3], [2 3 4], [1 2; 3 4; 5 6], [2 3], 3, "linear"), [3 4])

%!shared z, zout, tol
%! z = [1 3 5; 3 5 7; 5 7 9];
%! zout = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8; 5 6 7 8 9];
%! tol = 2 * eps;
%!
%!assert (interp2 (z), zout, tol)
%!assert (interp2 (z, "linear"), zout, tol)
%!assert (interp2 (z, "pchip"), zout, tol)
%!assert (interp2 (z, "cubic"), zout, tol)
%!assert (interp2 (z, "spline"), zout, tol)
%!assert (interp2 (z, [2 3 1], [2 2 2].', "linear"),
%!        repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2].', "pchip"),
%!        repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2].', "cubic"),
%!        repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2].', "spline"),
%!        repmat ([5, 7, 3], [3, 1]), tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "linear"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "pchip"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "cubic"), [5 7 3], tol)
%!assert (interp2 (z, [2 3 1], [2 2 2], "spline"), [5 7 3], tol)
%!assert (interp2 (z, [3; 3; 3], [2; 3; 1], "linear"), [7; 9; 5], tol)
%!assert (interp2 (z, [3; 3; 3], [2; 3; 1], "pchip"), [7; 9; 5], tol)
%!assert (interp2 (z, [3; 3; 3], [2; 3; 1], "cubic"), [7; 9; 5], tol)
%!test <62132>
%! # FIXME: single column yields single row with spline interpolation (numbers are correct)
%! assert (interp2 (z, [3; 3; 3], [2; 3; 1], "spline"), [7; 9; 5], tol)

## Test input validation
%!error interp2 (1, 1, 1, 1, 1, 2)    # only 5 numeric inputs
%!error interp2 (1, 1, 1, 1, 1, 2, 2) # only 5 numeric inputs
%!error <Z must be a 2-D matrix> interp2 ({1})
%!error <Z must be a 2-D matrix> interp2 (1,1,1)
%!error <Z must be a 2-D matrix> interp2 (ones (2,2,2))
%!error <N must be an integer .= 0> interp2 (ones (2), ones (2))
%!error <N must be an integer .= 0> interp2 (ones (2), -1)
%!error <N must be an integer .= 0> interp2 (ones (2), 1.5)
%!warning <ignoring unsupported '\*' flag> interp2 (rand (3,3), 1, "*linear");
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, "linear", {1})
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, "linear", ones (2,2))
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, "linear", "abc")
%!error <EXTRAP must be a numeric scalar> interp2 (1, 1, 1, 1, 1, "linear", "extrap")
%!error <X, Y must be numeric matrices> interp2 ({1}, 1, ones (2), 1, 1)
%!error <X, Y must be numeric matrices> interp2 (1, {1}, ones (2), 1, 1)
%!error <XI, YI must be numeric> interp2 (1, 1, ones (2), {1}, 1)
%!error <XI, YI must be numeric> interp2 (1, 1, ones (2), 1, {1})
%!error <X and Y must be matrices of equal size> interp2 (ones (2,2), 1, ones (2), 1, 1)
%!error <X and Y must be matrices of equal size> interp2 (ones (2,2), ones (2,3), ones (2), 1, 1)
%!error <X and Y size must match the dimensions of Z> interp2 (1:3, 1:3, ones (3,2), 1, 1)
%!error <X and Y size must match the dimensions of Z> interp2 (1:2, 1:2, ones (3,2), 1, 1)
%!error <X must be strictly monotonic> interp2 ([1 0 2], 1:3, ones (3,3), 1, 1)
%!error <Y must be strictly monotonic> interp2 (1:3, [1 0 2], ones (3,3), 1, 1)
%!warning <cubic requires at least 3 points in each dimension.> interp2 (eye(2), 1.5, 1.5, "cubic");
%!error <XI and YI must be matrices of equal size> interp2 (1:2, 1:2, ones (2), ones (2,2), 1)
%!error <XI and YI must be matrices of equal size> interp2 (1:2, 1:2, ones (2), 1, ones (2,2))
%!error <XI, YI must have uniform spacing> interp2 (1:2, 1:2, ones (2), [1 2 4], [1 2 3], "spline")
%!error <XI, YI must have uniform spacing> interp2 (1:2, 1:2, ones (2), [1 2 3], [1 2 4], "spline")
%!error interp2 (1, 1, 1, 1, 1, "foobar")