view scripts/statistics/iqr.m @ 31253:a40c0b7aa376

maint: changes to follow Octave coding conventions. * NEWS.8.md: Wrap lines to 72 chars. * LSODE-opts.in: Use two spaces after sentence ending period. * LSODE.cc: Use minimum of two spaces between code and start of comment. * MemoizedFunction.m: Change copyright date to 2022 since this is the year it was accepted into core. Don't wrap error() lines to 80 chars. Use newlines to improve readability of switch statements. Use minimum of two spaces between code and start of comment. * del2.m, integral.m, interp1.m, interp2.m, griddata.m, inpolygon.m, waitbar.m, cubehelix.m, ind2x.m, importdata.m, textread.m, logm.m, lighting.m, shading.m, xticklabels.m, yticklabels.m, zticklabels.m, colorbar.m, meshc.m, print.m, __gnuplot_draw_axes__.m, struct2hdl.m, ppval.m, ismember.m, iqr.m: Use a space between comment character '#' and start of comment. Use hyphen for adjectives describing dimensions such as "1-D". * vectorize.m, ode23s.m: Use is_function_handle() instead of "isa (x, "function_handle")" for clarity and performance. * clearAllMemoizedCaches.m: Change copyright date to 2022 since this is the year it was accepted into core. Remove input validation which is done by interpreter. Use two newlines between end of code and start of BIST tests. * memoize.m: Change copyright date to 2022 since this is the year it was accepted into core. Re-wrap documentation to 80 chars. Use is_function_handle() instead of "isa (x, "function_handle")" for clarity and performance. Use two newlines between end of code and start of BIST tests. Use semicolon for assert statements within %!test block. Re-write BIST tests for input validation. * __memoize__.m: Change copyright date to 2022 since this is the year it was accepted into core. Use spaces in for statements to improve readability. * unique.m: Add FIXME note to commented BIST test * dec2bin.m: Remove stray newline at end of file. * triplequad.m: Reduce doubly-commented BIST syntax using "#%!#" to "#%!". * delaunayn.m: Use input variable names in error() statements. Use minimum of two spaces between code and start of comment. Use hyphen for describing dimensions. Use two newlines between end of code and start of BIST tests. Update BIST tests to pass.
author Rik <rik@octave.org>
date Mon, 03 Oct 2022 18:06:55 -0700
parents 796f54d4ddbf
children 597f3ee61a48
line wrap: on
line source

########################################################################
##
## Copyright (C) 1995-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{Z} =} iqr (@var{x})
## @deftypefnx {} {@var{Z} =} iqr (@var{x}, @var{dim})
## @deftypefnx {} {@var{Z} =} iqr (@var{x}, @qcode{"ALL"})
## Return the interquartile range of @var{x}, defined as the distance between
## the 25th and 75th percentile values of @var{x} calculated using:
##    quantile (x, [0.25 0.75])
##
## If @var{x} is a vector, @code{iqr (@var{x})} will operate on the data in
## @var{x}.
##
## If @var{x} is a matrix, @code{iqr (@var{x})} will operate independently on
## each column in @var{x} returning a row vector @var{Z}.
##
## If @var{x} is a n-dimensional array, @code{iqr (@var{x})} will operate
## independently on the first non-singleton dimension in @var{x}, returning an
## array @var{Z} the same shape as @var{x} with the non-singleton dimenion
## reduced to 1.
##
## The optional variable @var{dim} can be used to force @code{iqr} to operate
## over the specified dimension.  @var{dim} can either be a scalar dimension or
## a vector of non-repeating dimensions over which to operate.  In either case
## @var{dim} must be positive integers.  A vector @var{dim} concatenates all
## specified dimensions for independent operation by @code{iqr}.
##
## Specifying dimension @qcode{"ALL"} will force @code{iqr} to operate
## on all elements of @var{x}, and is equivalent to @code{iqr (@var{x}(:))}.
## Similarly, specifying a vector dimension including all non-singleton
## dimensions of @var{x} is equivalent to @code{iqr (@var{x}, @qcode{"ALL"})}.
##
## If @var{x} is a scalar, or only singleton dimensions are specified for
## @var{dim}, the output will be @code{zeros (size (@var{x}))}.
##
## As a measure of dispersion, the interquartile range is less affected by
## outliers than either @code{range} or @code{std}.
##
## @seealso{bounds, mad, range, std, prctile, quantile}
## @end deftypefn

## TODO:  When Probability Distribution Objects are implemented, enable
##        handling for those object types.

function z = iqr (x, dim)

  ## input checks
  if (nargin < 1)
    print_usage ();
  elseif (nargin < 2)
    dim = [];
  endif

  if (! (isnumeric (x) || islogical (x)))
    error ("iqr: X must be a numeric vector or matrix");
  endif

  vecdim_flag = false;
  nd = ndims (x);
  sz = size (x);

  if (isempty (dim))
    ## Find first non-singleton dimension.
    if (max (sz) == 1)
      dim = 2;
    else
      dim = find ((sz > 1), 1);
    endif
  else

    if (isvector (dim) && isnumeric (dim)
        && all (dim > 0) && all (rem (dim, 1) == 0))

      if (((num_vecdims = numel (dim)) > 1) && all (diff (sort (dim))))
        ## DIM must be 1-D and non repeating.

        ## Detect trivial case of DIM being all dimensions (same as "all").
        highest_dim = (max (nd, max (dim)));
        if ((num_vecdims == nd) && (highest_dim == nd))
          x = x(:);
          sz = size (x);
          dim = 1;
        else
          ## Move dimensions for operation to the front, keeping the order of
          ## the remaining dimensions.
          ## Reshape those into a single dimension.
          ## Process as normal for a dim1 iqr on X, reshape when done.

          vecdim_flag = true;  ## flag for final reshape

          if (iscolumn (dim))
            dim = dim.';
          endif

          ## Permutation vector with DIM at front
          perm = [1:highest_dim];
          perm(dim) = [];
          perm = [dim, perm];

          ## Reshape X to put dims to process at front.
          x = permute (x, perm);
          sz_x_new = size (x);

          ## Preserve trailing singletons when dim > ndims (x).
          sz_x_new = [sz_x_new, ones(1, highest_dim - numel (sz_x_new))];

          newshape = [prod(sz_x_new(1:num_vecdims)), ...
                      ones(1, (num_vecdims-1)), ...
                      sz_x_new((num_vecdims+1):end)];

          if (numel (newshape) == 1)
            newshape = [newshape, 1];
          endif

          ## Collapse dimensions to be processses into single column.
          x = reshape (x, newshape);

          ## Operate column-wise.
          dim = 1;
        endif

      elseif (! isscalar (dim))
        error ("iqr: vector DIM must contain non-repeating positive integers");
      endif

    elseif (strcmp (tolower (dim), "all"))
      ## "ALL" simplifies to collapsing all elements to single vector
      x = x(:);
      dim = 1;
      sz = size (x);

    else
      error ("iqr: DIM must be a positive integer scalar, vector, or 'all'");
    endif

  endif

  if (((dim > nd) || (sz(dim) == 1)) && all (isfinite (x)))
    ## shortcut easy zeros
    z = zeros (sz);
  elseif (iscolumn (x) && (dim == 1))
    ## detect col vector with quantile/diff dim requirement mismatch
    z = abs (diff (quantile (x, [0.25, 0.75], 1), [], 2));
  else
    z = abs (diff (quantile (x, [0.25, 0.75], dim), [], dim));
  endif

  if (vecdim_flag)
    z = ipermute (z, perm);
  endif

endfunction


%!assert (iqr (17), 0)
%!assert (iqr (17, 1), 0)
%!assert (iqr (17, 4), 0)
%!assert (iqr (1:3), 1.5)
%!assert (iqr (1:4), 2)
%!assert (iqr (1:5), 2.5)
%!assert (iqr (1:10), 5)
%!assert (iqr ((1:10).'), 5)
%!assert (iqr (1:10, 2), 5)
%!assert (iqr (1:10, 1), zeros (1, 10))
%!assert (iqr (1:10, 3), zeros (1, 10))
%!assert (iqr ([1:5; 2:6], "all"), 3)

%!test
%! x = reshape (1:6, [1 2 3]);
%! assert (iqr (x), ones (1, 1, 3));
%! assert (iqr (x, 1), zeros (1, 2, 3));
%! assert (iqr (x, 2), ones (1, 1, 3));
%! assert (iqr (x, 3), [3 3]);

## n-D arrays
%!test
%! x = magic (4); x = cat (3,x, 2*x, 3*x); x = cat (4, x, 2*x);
%! y = cat (3, 8*[1 1 1 1], 16*[1 1 1 1], 24*[1 1 1 1]);
%! assert (iqr (x), cat (4, y, 2*y));
%! assert (iqr (x, 1), cat (4, y, 2*y));
%! y = cat (3, 4*[3 1 1 3].', 8*[3 1 1 3].', 12*[3 1 1 3].');
%! assert (iqr (x, 2), cat (4, y, 2*y));
%! y = [24 3 4.5 19.5; 7.5 16.5 15 12; 13.5 10.5 9, 18; 6 21 22.5 1.5];
%! assert (iqr (x, 3), cat (4, y, 2*y));
%! y = [16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1];
%! assert (iqr (x, 4), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, 5), zeros (size (x)));

## vector dimensions
%!assert (iqr (17, [1 8]), 0)
%!assert (iqr ([[1 2 5]; [2 5 6]], [1 2]), 3)
%!assert (iqr (cat (3, [1 2 5; 2 5 6], [1 2 5; 2 5 6]), [1 2]), cat(3, 3, 3))
%!assert (iqr (cat (3, [1 2 5; 2 5 6], [1 2 5; 2 5 6]), [1 2]'), cat(3, 3, 3))
%!test
%! x = magic (4); x = cat (3, x, 2*x, 3*x); x = cat (4, x, 2*x);
%! y = cat (3, 8, 16, 24);
%! assert (iqr (x, [1 2]), cat (4, y, 2*y));
%! y = [14, 18.5, 17.5 19.5];
%! assert (iqr (x, [1 3]), cat (4, y, 2*y));
%! y = [10.5 12.5 11.5 15.0000];
%! assert (iqr (x, [1 4]), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, [1 5]), iqr (x, 1));
%! y = [24 13 12 25.5]';
%! assert (iqr (x, [2 3]), cat (4, y, 2*y));
%! y = [17.5, 9, 8, 18.5]';
%! assert (iqr (x, [2 4]), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, [3 4]), [32 4 6 26; 10 22 20 16; 18 14 12 24; 8 28 30 2]);
%! assert (iqr (x, [3 4]), iqr (x, [4 3]));
%! assert (iqr (x, [1 2 3]), cat (4, 17.5, 35));
%! assert (iqr (x, [2 3 4]), [29.5 19.5 23 31]');
%! assert (iqr (x, [1 3 4]), [22 28 22 30.5]);
%! assert (iqr (x, [1 2 4]), cat (3, 11, 22, 33));
%! assert (iqr (x, [1 2 5]), iqr (x, [1 2]));
%! assert (iqr (x, [5 6]), zeros (size (x)));

## Inf, NaN
%!assert (iqr (Inf), NaN)
%!assert (iqr (-Inf), NaN)
%!assert (iqr (NaN), NaN)
%!assert (iqr (NaN), NaN)
%!assert (iqr ([1 2 Inf], 1), [0 0 NaN])
%!assert (iqr ([1 2 Inf], 2), Inf)
%!assert (iqr ([1 2 -Inf], 1), [0 0 NaN])
%!assert (iqr ([1 2 -Inf], 2), Inf)
%!assert (iqr ([1 2 3 NaN], 1), [0 0 0 NaN])
%!assert (iqr ([1 2 3 NaN], 2), 1.5)
%!assert (iqr ([1 NaN 2 3], 2), 1.5)
%!assert (iqr (NaN (2), 1), [NaN, NaN])
%!assert (iqr (NaN (2), 2), [NaN; NaN])
%!assert (iqr (NaN (2), 3), NaN (2))
%!assert (iqr ([[1 2 5], [2 NaN 6]], "all"), 3.5)

## input validation
%!error iqr ()
%!error iqr (1, 2, 3)
%!error <X .* numeric> iqr (['A'; 'B'])
%!error <DIM .* positive integer> iqr (1, 'A')
%!error <DIM .* positive integer> iqr (1, 0)
%!error <DIM .* positive integer> iqr (1, -2)
%!error <DIM .* positive integer> iqr (1, 1.4)
%!error <DIM .* positive integer> iqr (1, [1 -2])
%!error <DIM .* positive integer> iqr (1, [1 1.4])
%!error <DIM .* positive integer> iqr ([1 2 3], NaN)
%!error <DIM .* positive integer> iqr ([1 2 3], [2 NaN])
%!error <DIM .* positive integer> iqr ([1 2 3], Inf)
%!error <DIM .* positive integer> iqr ([1 2 3], [2 Inf])
%!error <vector DIM .* non-repeating> iqr ([1 2 3], [1 2 1])
%!error <DIM .* vector> iqr (1, [1 2; 3 4])