view libinterp/octave-value/ov-flt-cx-mat.cc @ 31607:aac27ad79be6 stable

maint: Re-indent code after switch to using namespace macros. * build-env.h, build-env.in.cc, Cell.h, __betainc__.cc, __eigs__.cc, __ftp__.cc, __ichol__.cc, __ilu__.cc, __isprimelarge__.cc, __magick_read__.cc, __pchip_deriv__.cc, amd.cc, base-text-renderer.cc, base-text-renderer.h, besselj.cc, bitfcns.cc, bsxfun.cc, c-file-ptr-stream.h, call-stack.cc, call-stack.h, ccolamd.cc, cellfun.cc, chol.cc, colamd.cc, dasrt.cc, data.cc, debug.cc, defaults.cc, defaults.h, det.cc, display.cc, display.h, dlmread.cc, dynamic-ld.cc, dynamic-ld.h, ellipj.cc, environment.cc, environment.h, error.cc, error.h, errwarn.h, event-manager.cc, event-manager.h, event-queue.cc, event-queue.h, fcn-info.cc, fcn-info.h, fft.cc, fft2.cc, file-io.cc, filter.cc, find.cc, ft-text-renderer.cc, ft-text-renderer.h, gcd.cc, gl-render.cc, gl-render.h, gl2ps-print.cc, gl2ps-print.h, graphics-toolkit.cc, graphics-toolkit.h, graphics.cc, gsvd.cc, gtk-manager.cc, gtk-manager.h, help.cc, help.h, hook-fcn.cc, hook-fcn.h, input.cc, input.h, interpreter-private.cc, interpreter-private.h, interpreter.cc, interpreter.h, inv.cc, jsondecode.cc, jsonencode.cc, latex-text-renderer.cc, latex-text-renderer.h, load-path.cc, load-path.h, load-save.cc, load-save.h, lookup.cc, ls-hdf5.cc, ls-mat4.cc, ls-mat5.cc, lsode.cc, lu.cc, mappers.cc, matrix_type.cc, max.cc, mex.cc, mexproto.h, mxarray.h, mxtypes.in.h, oct-errno.in.cc, oct-hdf5-types.cc, oct-hist.cc, oct-hist.h, oct-map.cc, oct-map.h, oct-opengl.h, oct-prcstrm.h, oct-process.cc, oct-process.h, oct-stdstrm.h, oct-stream.cc, oct-stream.h, oct-strstrm.h, octave-default-image.h, ordqz.cc, ordschur.cc, pager.cc, pager.h, pinv.cc, pow2.cc, pr-output.cc, psi.cc, qr.cc, quadcc.cc, rand.cc, regexp.cc, settings.cc, settings.h, sighandlers.cc, sighandlers.h, sparse-xpow.cc, sqrtm.cc, stack-frame.cc, stack-frame.h, stream-euler.cc, strfns.cc, svd.cc, syminfo.cc, syminfo.h, symrcm.cc, symrec.cc, symrec.h, symscope.cc, symscope.h, symtab.cc, symtab.h, sysdep.cc, sysdep.h, text-engine.cc, text-engine.h, text-renderer.cc, text-renderer.h, time.cc, toplev.cc, typecast.cc, url-handle-manager.cc, url-handle-manager.h, urlwrite.cc, utils.cc, utils.h, variables.cc, variables.h, xdiv.cc, __delaunayn__.cc, __init_fltk__.cc, __init_gnuplot__.cc, __ode15__.cc, __voronoi__.cc, audioread.cc, convhulln.cc, gzip.cc, cdef-class.cc, cdef-class.h, cdef-fwd.h, cdef-manager.cc, cdef-manager.h, cdef-method.cc, cdef-method.h, cdef-object.cc, cdef-object.h, cdef-package.cc, cdef-package.h, cdef-property.cc, cdef-property.h, cdef-utils.cc, cdef-utils.h, ov-base-diag.cc, ov-base-int.cc, ov-base-mat.cc, ov-base-mat.h, ov-base-scalar.cc, ov-base.cc, ov-base.h, ov-bool-mat.cc, ov-bool-mat.h, ov-bool-sparse.cc, ov-bool.cc, ov-builtin.h, ov-cell.cc, ov-ch-mat.cc, ov-class.cc, ov-class.h, ov-classdef.cc, ov-classdef.h, ov-complex.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-dld-fcn.cc, ov-dld-fcn.h, ov-fcn-handle.cc, ov-fcn-handle.h, ov-fcn.h, ov-float.cc, ov-flt-complex.cc, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-diag.cc, ov-flt-re-mat.cc, ov-flt-re-mat.h, ov-intx.h, ov-java.cc, ov-lazy-idx.cc, ov-legacy-range.cc, ov-magic-int.cc, ov-mex-fcn.cc, ov-mex-fcn.h, ov-null-mat.cc, ov-perm.cc, ov-range.cc, ov-re-diag.cc, ov-re-mat.cc, ov-re-mat.h, ov-re-sparse.cc, ov-scalar.cc, ov-str-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-typeinfo.h, ov-usr-fcn.cc, ov-usr-fcn.h, ov.cc, ov.h, ovl.h, octave.cc, octave.h, op-b-sbm.cc, op-bm-sbm.cc, op-cs-scm.cc, op-fm-fcm.cc, op-fs-fcm.cc, op-s-scm.cc, op-scm-cs.cc, op-scm-s.cc, op-sm-cs.cc, ops.h, anon-fcn-validator.cc, anon-fcn-validator.h, bp-table.cc, bp-table.h, comment-list.cc, comment-list.h, filepos.h, lex.h, oct-lvalue.cc, oct-lvalue.h, parse.h, profiler.cc, profiler.h, pt-anon-scopes.cc, pt-anon-scopes.h, pt-arg-list.cc, pt-arg-list.h, pt-args-block.cc, pt-args-block.h, pt-array-list.cc, pt-array-list.h, pt-assign.cc, pt-assign.h, pt-binop.cc, pt-binop.h, pt-bp.cc, pt-bp.h, pt-cbinop.cc, pt-cbinop.h, pt-cell.cc, pt-cell.h, pt-check.cc, pt-check.h, pt-classdef.cc, pt-classdef.h, pt-cmd.h, pt-colon.cc, pt-colon.h, pt-const.cc, pt-const.h, pt-decl.cc, pt-decl.h, pt-eval.cc, pt-eval.h, pt-except.cc, pt-except.h, pt-exp.cc, pt-exp.h, pt-fcn-handle.cc, pt-fcn-handle.h, pt-id.cc, pt-id.h, pt-idx.cc, pt-idx.h, pt-jump.h, pt-loop.cc, pt-loop.h, pt-mat.cc, pt-mat.h, pt-misc.cc, pt-misc.h, pt-pr-code.cc, pt-pr-code.h, pt-select.cc, pt-select.h, pt-spmd.cc, pt-spmd.h, pt-stmt.cc, pt-stmt.h, pt-tm-const.cc, pt-tm-const.h, pt-unop.cc, pt-unop.h, pt-walk.cc, pt-walk.h, pt.cc, pt.h, token.cc, token.h, Range.cc, Range.h, idx-vector.cc, idx-vector.h, range-fwd.h, CollocWt.cc, CollocWt.h, aepbalance.cc, aepbalance.h, chol.cc, chol.h, gepbalance.cc, gepbalance.h, gsvd.cc, gsvd.h, hess.cc, hess.h, lo-mappers.cc, lo-mappers.h, lo-specfun.cc, lo-specfun.h, lu.cc, lu.h, oct-convn.cc, oct-convn.h, oct-fftw.cc, oct-fftw.h, oct-norm.cc, oct-norm.h, oct-rand.cc, oct-rand.h, oct-spparms.cc, oct-spparms.h, qr.cc, qr.h, qrp.cc, qrp.h, randgamma.cc, randgamma.h, randmtzig.cc, randmtzig.h, randpoisson.cc, randpoisson.h, schur.cc, schur.h, sparse-chol.cc, sparse-chol.h, sparse-lu.cc, sparse-lu.h, sparse-qr.cc, sparse-qr.h, svd.cc, svd.h, child-list.cc, child-list.h, dir-ops.cc, dir-ops.h, file-ops.cc, file-ops.h, file-stat.cc, file-stat.h, lo-sysdep.cc, lo-sysdep.h, lo-sysinfo.cc, lo-sysinfo.h, mach-info.cc, mach-info.h, oct-env.cc, oct-env.h, oct-group.cc, oct-group.h, oct-password.cc, oct-password.h, oct-syscalls.cc, oct-syscalls.h, oct-time.cc, oct-time.h, oct-uname.cc, oct-uname.h, action-container.cc, action-container.h, base-list.h, cmd-edit.cc, cmd-edit.h, cmd-hist.cc, cmd-hist.h, f77-fcn.h, file-info.cc, file-info.h, lo-array-errwarn.cc, lo-array-errwarn.h, lo-hash.cc, lo-hash.h, lo-ieee.h, lo-regexp.cc, lo-regexp.h, lo-utils.cc, lo-utils.h, oct-base64.cc, oct-base64.h, oct-glob.cc, oct-glob.h, oct-inttypes.h, oct-mutex.cc, oct-mutex.h, oct-refcount.h, oct-shlib.cc, oct-shlib.h, oct-sparse.cc, oct-sparse.h, oct-string.h, octave-preserve-stream-state.h, pathsearch.cc, pathsearch.h, quit.cc, quit.h, unwind-prot.cc, unwind-prot.h, url-transfer.cc, url-transfer.h: Re-indent code after switch to using namespace macros.
author Rik <rik@octave.org>
date Thu, 01 Dec 2022 18:02:15 -0800
parents b3ca7f891750
children 597f3ee61a48
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <clocale>
#include <istream>
#include <ostream>
#include <vector>

#include "dNDArray.h"
#include "fNDArray.h"

#include "data-conv.h"
#include "lo-ieee.h"
#include "lo-specfun.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mach-info.h"
#include "oct-locbuf.h"

#include "errwarn.h"
#include "mxarray.h"
#include "ovl.h"
#include "oct-hdf5.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-complex.h"
#include "ov-flt-complex.h"
#include "ov-cx-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-scalar.h"
#include "ov-float.h"
#include "pr-output.h"
#include "ops.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-hdf5.h"
#include "ls-utils.h"


template class octave_base_matrix<FloatComplexNDArray>;

DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex_matrix,
                                     "float complex matrix", "single");

octave_base_value *
octave_float_complex_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = nullptr;

  if (m_matrix.numel () == 1)
    {
      FloatComplex c = m_matrix (0);

      if (c.imag () == 0.0)
        retval = new octave_float_scalar (c.real ());
      else
        retval = new octave_float_complex (c);
    }
  else if (m_matrix.all_elements_are_real ())
    retval = new octave_float_matrix (::real (m_matrix));

  return retval;
}

double
octave_float_complex_matrix::double_value (bool force_conversion) const
{
  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  return std::real (m_matrix(0, 0));
}

float
octave_float_complex_matrix::float_value (bool force_conversion) const
{
  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real scalar");

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "real scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "real scalar");

  return std::real (m_matrix(0, 0));
}

Matrix
octave_float_complex_matrix::matrix_value (bool force_conversion) const
{
  Matrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (m_matrix));

  return retval;
}

FloatMatrix
octave_float_complex_matrix::float_matrix_value (bool force_conversion) const
{
  FloatMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = ::real (FloatComplexMatrix (m_matrix));

  return retval;
}

Complex
octave_float_complex_matrix::complex_value (bool) const
{
  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  return m_matrix(0, 0);
}

FloatComplex
octave_float_complex_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () == 0 || columns () == 0)
    err_invalid_conversion ("complex matrix", "complex scalar");

  warn_implicit_conversion ("Octave:array-to-scalar",
                            "complex matrix", "complex scalar");

  retval = m_matrix(0, 0);

  return retval;
}

ComplexMatrix
octave_float_complex_matrix::complex_matrix_value (bool) const
{
  return FloatComplexMatrix (m_matrix);
}

FloatComplexMatrix
octave_float_complex_matrix::float_complex_matrix_value (bool) const
{
  return FloatComplexMatrix (m_matrix);
}

boolNDArray
octave_float_complex_matrix::bool_array_value (bool warn) const
{
  if (m_matrix.any_element_is_nan ())
    octave::err_nan_to_logical_conversion ();
  if (warn && (! m_matrix.all_elements_are_real ()
               || real (m_matrix).any_element_not_one_or_zero ()))
    warn_logical_conversion ();

  return mx_el_ne (m_matrix, FloatComplex (0.0));
}

charNDArray
octave_float_complex_matrix::char_array_value (bool frc_str_conv) const
{
  charNDArray retval;

  if (! frc_str_conv)
    warn_implicit_conversion ("Octave:num-to-str",
                              "complex matrix", "string");
  else
    {
      retval = charNDArray (dims ());
      octave_idx_type nel = numel ();

      for (octave_idx_type i = 0; i < nel; i++)
        retval.elem (i) = static_cast<char> (std::real (m_matrix.elem (i)));
    }

  return retval;
}

FloatComplexNDArray
octave_float_complex_matrix::float_complex_array_value (bool) const
{
  return FloatComplexNDArray (m_matrix);
}

SparseMatrix
octave_float_complex_matrix::sparse_matrix_value (bool force_conversion) const
{
  SparseMatrix retval;

  if (! force_conversion)
    warn_implicit_conversion ("Octave:imag-to-real",
                              "complex matrix", "real matrix");

  retval = SparseMatrix (::real (complex_matrix_value ()));

  return retval;
}

SparseComplexMatrix
octave_float_complex_matrix::sparse_complex_matrix_value (bool) const
{
  return SparseComplexMatrix (complex_matrix_value ());
}

octave_value
octave_float_complex_matrix::as_double (void) const
{
  return ComplexNDArray (m_matrix);
}

octave_value
octave_float_complex_matrix::as_single (void) const
{
  return m_matrix;
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type k) const
{
  octave_value retval;
  if (k == 0 && m_matrix.ndims () == 2
      && (m_matrix.rows () == 1 || m_matrix.columns () == 1))
    retval = FloatComplexDiagMatrix (DiagArray2<FloatComplex> (m_matrix));
  else
    retval = octave_base_matrix<FloatComplexNDArray>::diag (k);

  return retval;
}

octave_value
octave_float_complex_matrix::diag (octave_idx_type m, octave_idx_type n) const
{
  if (m_matrix.ndims () != 2
      || (m_matrix.rows () != 1 && m_matrix.columns () != 1))
    error ("diag: expecting vector argument");

  FloatComplexMatrix mat (m_matrix);

  return mat.diag (m, n);
}

bool
octave_float_complex_matrix::save_ascii (std::ostream& os)
{
  dim_vector dv = dims ();

  if (dv.ndims () > 2)
    {
      FloatComplexNDArray tmp = complex_array_value ();

      os << "# ndims: " << dv.ndims () << "\n";

      for (int i = 0; i < dv.ndims (); i++)
        os << ' ' << dv(i);

      os << "\n" << tmp;
    }
  else
    {
      // Keep this case, rather than use generic code above for backward
      // compatibility.  Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      os << complex_matrix_value ();
    }

  return true;
}

bool
octave_float_complex_matrix::load_ascii (std::istream& is)
{
  string_vector keywords(2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (! extract_keyword (is, keywords, kw, val, true))
    error ("load: failed to extract number of rows and columns");

  // Set "C" locale for the duration of this function to avoid the performance
  // panelty of frequently switching the locale when reading floating point
  // values from the stream.
  char *prev_locale = std::setlocale (LC_ALL, nullptr);
  std::string old_locale (prev_locale ? prev_locale : "");
  std::setlocale (LC_ALL, "C");
  octave::unwind_action act
  ([&old_locale] () { std::setlocale (LC_ALL, old_locale.c_str ()); });

  if (kw == "ndims")
    {
      int mdims = static_cast<int> (val);

      if (mdims < 0)
        error ("load: failed to extract number of dimensions");

      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        is >> dv(i);

      if (! is)
        error ("load: failed to read dimensions");

      FloatComplexNDArray tmp(dv);

      is >> tmp;

      if (! is)
        error ("load: failed to load matrix constant");

      m_matrix = tmp;
    }
  else if (kw == "rows")
    {
      octave_idx_type nr = val;
      octave_idx_type nc = 0;

      if (nr < 0 || ! extract_keyword (is, "columns", nc) || nc < 0)
        error ("load: failed to extract number of rows and columns");

      if (nr > 0 && nc > 0)
        {
          FloatComplexMatrix tmp (nr, nc);
          is >> tmp;
          if (! is)
            error ("load: failed to load matrix constant");

          m_matrix = tmp;
        }
      else if (nr == 0 || nc == 0)
        m_matrix = FloatComplexMatrix (nr, nc);
      else
        panic_impossible ();
    }
  else
    panic_impossible ();

  return true;
}

bool
octave_float_complex_matrix::save_binary (std::ostream& os, bool)
{
  dim_vector dv = dims ();
  if (dv.ndims () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - dv.ndims ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i = 0; i < dv.ndims (); i++)
    {
      tmp = dv(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  FloatComplexNDArray m = complex_array_value ();
  save_type st = LS_FLOAT;
  if (dv.numel () > 4096) // FIXME: make this configurable.
    {
      float max_val, min_val;
      if (m.all_integers (max_val, min_val))
        st = octave::get_save_type (max_val, min_val);
    }

  const FloatComplex *mtmp = m.data ();
  write_floats (os, reinterpret_cast<const float *> (mtmp), st,
                2 * dv.numel ());

  return true;
}

bool
octave_float_complex_matrix::load_binary (std::istream& is, bool swap,
    octave::mach_info::float_format fmt)
{
  char tmp;
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims < 0)
    {
      mdims = - mdims;
      int32_t di;
      dim_vector dv;
      dv.resize (mdims);

      for (int i = 0; i < mdims; i++)
        {
          if (! is.read (reinterpret_cast<char *> (&di), 4))
            return false;
          if (swap)
            swap_bytes<4> (&di);
          dv(i) = di;
        }

      // Convert an array with a single dimension to be a row vector.
      // Octave should never write files like this, other software
      // might.

      if (mdims == 1)
        {
          mdims = 2;
          dv.resize (mdims);
          dv(1) = dv(0);
          dv(0) = 1;
        }

      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;

      FloatComplexNDArray m(dv);
      FloatComplex *im = m.fortran_vec ();
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2 * dv.numel (), swap, fmt);

      if (! is)
        return false;

      m_matrix = m;
    }
  else
    {
      int32_t nr, nc;
      nr = mdims;
      if (! is.read (reinterpret_cast<char *> (&nc), 4))
        return false;
      if (swap)
        swap_bytes<4> (&nc);
      if (! is.read (reinterpret_cast<char *> (&tmp), 1))
        return false;
      FloatComplexMatrix m (nr, nc);
      FloatComplex *im = m.fortran_vec ();
      octave_idx_type len = static_cast<octave_idx_type> (nr) * nc;
      read_floats (is, reinterpret_cast<float *> (im),
                   static_cast<save_type> (tmp), 2*len, swap, fmt);

      if (! is)
        return false;

      m_matrix = m;
    }
  return true;
}

bool
octave_float_complex_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name,
                                        bool)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.ndims ();
  hid_t space_hid, data_hid, type_hid;
  space_hid = data_hid = type_hid = -1;
  FloatComplexNDArray m = complex_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, nullptr);
  if (space_hid < 0) return false;

  hid_t save_type_hid = H5T_NATIVE_FLOAT;

#if defined (HAVE_HDF5_INT2FLOAT_CONVERSIONS)
  // hdf5 currently doesn't support float/integer conversions
  else
    {
      float max_val, min_val;

      if (m.all_integers (max_val, min_val))
        save_type_hid
          = save_type_to_hdf5 (octave::get_save_type (max_val, min_val));
    }
#endif

  type_hid = hdf5_make_complex_type (save_type_hid);
  if (type_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }
#if defined (HAVE_HDF5_18)
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT,
                        octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      H5Tclose (type_hid);
      return false;
    }

  hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_FLOAT);
  if (complex_type_hid < 0) retval = false;

  if (retval)
    {
      FloatComplex *mtmp = m.fortran_vec ();
      if (H5Dwrite (data_hid, complex_type_hid, octave_H5S_ALL, octave_H5S_ALL,
                    octave_H5P_DEFAULT, mtmp)
          < 0)
        {
          H5Tclose (complex_type_hid);
          retval = false;
        }
    }

  H5Tclose (complex_type_hid);
  H5Dclose (data_hid);
  H5Tclose (type_hid);
  H5Sclose (space_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (name);

  warn_save ("hdf5");
#endif

  return retval;
}

bool
octave_float_complex_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    m_matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if defined (HAVE_HDF5_18)
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t type_hid = H5Dget_type (data_hid);

  hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_FLOAT);

  if (! hdf5_types_compatible (type_hid, complex_type))
    {
      H5Tclose (complex_type);
      H5Dclose (data_hid);
      return false;
    }

  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Tclose (complex_type);
      H5Sclose (space_id);
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  FloatComplexNDArray m (dv);
  FloatComplex *reim = m.fortran_vec ();
  if (H5Dread (data_hid, complex_type, octave_H5S_ALL, octave_H5S_ALL,
               octave_H5P_DEFAULT, reim)
      >= 0)
    {
      retval = true;
      m_matrix = m;
    }

  H5Tclose (complex_type);
  H5Sclose (space_id);
  H5Dclose (data_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (name);

  warn_load ("hdf5");
#endif

  return retval;
}

void
octave_float_complex_matrix::print_raw (std::ostream& os,
                                        bool pr_as_read_syntax) const
{
  octave_print_internal (os, m_matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

mxArray *
octave_float_complex_matrix::as_mxArray (bool interleaved) const
{
  mxArray *retval = new mxArray (interleaved, mxSINGLE_CLASS, dims (),
                                 mxCOMPLEX);

  mwSize nel = numel ();

  const FloatComplex *pdata = m_matrix.data ();

  if (interleaved)
    {
      mxComplexSingle *pd
        = static_cast<mxComplexSingle *> (retval->get_data ());

      for (mwIndex i = 0; i < nel; i++)
        {
          pd[i].real = pdata[i].real ();
          pd[i].imag = pdata[i].imag ();
        }
    }
  else
    {
      mxSingle *pr = static_cast<mxSingle *> (retval->get_data ());
      mxSingle *pi = static_cast<mxSingle *> (retval->get_imag_data ());

      for (mwIndex i = 0; i < nel; i++)
        {
          pr[i] = pdata[i].real ();
          pi[i] = pdata[i].imag ();
        }
    }

  return retval;
}

octave_value
octave_float_complex_matrix::map (unary_mapper_t umap) const
{
  switch (umap)
    {
    // Mappers handled specially.
    case umap_real:
      return ::real (m_matrix);
    case umap_imag:
      return ::imag (m_matrix);
    case umap_conj:
      return ::conj (m_matrix);

    // Special cases for Matlab compatibility.
    case umap_xtolower:
    case umap_xtoupper:
      return m_matrix;

#define ARRAY_METHOD_MAPPER(UMAP, FCN)        \
    case umap_ ## UMAP:                       \
      return octave_value (m_matrix.FCN ())

      ARRAY_METHOD_MAPPER (abs, abs);
      ARRAY_METHOD_MAPPER (isnan, isnan);
      ARRAY_METHOD_MAPPER (isinf, isinf);
      ARRAY_METHOD_MAPPER (isfinite, isfinite);

#define ARRAY_MAPPER(UMAP, TYPE, FCN)                 \
    case umap_ ## UMAP:                               \
      return octave_value (m_matrix.map<TYPE> (FCN))

      ARRAY_MAPPER (acos, FloatComplex, octave::math::acos);
      ARRAY_MAPPER (acosh, FloatComplex, octave::math::acosh);
      ARRAY_MAPPER (angle, float, std::arg);
      ARRAY_MAPPER (arg, float, std::arg);
      ARRAY_MAPPER (asin, FloatComplex, octave::math::asin);
      ARRAY_MAPPER (asinh, FloatComplex, octave::math::asinh);
      ARRAY_MAPPER (atan, FloatComplex, octave::math::atan);
      ARRAY_MAPPER (atanh, FloatComplex, octave::math::atanh);
      ARRAY_MAPPER (erf, FloatComplex, octave::math::erf);
      ARRAY_MAPPER (erfc, FloatComplex, octave::math::erfc);
      ARRAY_MAPPER (erfcx, FloatComplex, octave::math::erfcx);
      ARRAY_MAPPER (erfi, FloatComplex, octave::math::erfi);
      ARRAY_MAPPER (dawson, FloatComplex, octave::math::dawson);
      ARRAY_MAPPER (ceil, FloatComplex, octave::math::ceil);
      ARRAY_MAPPER (cos, FloatComplex, std::cos);
      ARRAY_MAPPER (cosh, FloatComplex, std::cosh);
      ARRAY_MAPPER (exp, FloatComplex, std::exp);
      ARRAY_MAPPER (expm1, FloatComplex, octave::math::expm1);
      ARRAY_MAPPER (fix, FloatComplex, octave::math::fix);
      ARRAY_MAPPER (floor, FloatComplex, octave::math::floor);
      ARRAY_MAPPER (log, FloatComplex, std::log);
      ARRAY_MAPPER (log2, FloatComplex, octave::math::log2);
      ARRAY_MAPPER (log10, FloatComplex, std::log10);
      ARRAY_MAPPER (log1p, FloatComplex, octave::math::log1p);
      ARRAY_MAPPER (round, FloatComplex, octave::math::round);
      ARRAY_MAPPER (roundb, FloatComplex, octave::math::roundb);
      ARRAY_MAPPER (signum, FloatComplex, octave::math::signum);
      ARRAY_MAPPER (sin, FloatComplex, std::sin);
      ARRAY_MAPPER (sinh, FloatComplex, std::sinh);
      ARRAY_MAPPER (sqrt, FloatComplex, std::sqrt);
      ARRAY_MAPPER (tan, FloatComplex, std::tan);
      ARRAY_MAPPER (tanh, FloatComplex, std::tanh);
      ARRAY_MAPPER (isna, bool, octave::math::isna);

    default:
      return octave_base_value::map (umap);
    }
}