view scripts/plot/draw/ostreamtube.m @ 32062:ada96a467a28

quiver: Improve plotting with non-float numeric inputs (bug #59695) * scripts/plot/draw/private/__quiver__.m: Change firstnonnumeric check to look for char instead of numeric to allow for logical inputs. Recast all inputs up to firstnonnumeric as doubles. Check if firstnonnumeric element is 'off' and if so set scale factor to 0 and increment firstnonnumeric. * scripts/plot/draw/quiver.m: Update docstring to include scaling factor option 'off'. Add BIST for int and logical input types. * scripts/plot/draw/quiver3.m: Update docstring to include scaling factor option 'off'. Add BISTs for too-few inputs. * etc/NEWS.9.md: Appended details of changes to quiver note under General Improvements and noted it also applies to quiver3.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Wed, 26 Apr 2023 17:18:50 -0400
parents 597f3ee61a48
children 2e484f9f1f18
line wrap: on
line source

########################################################################
##
## Copyright (C) 2019-2023 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} ostreamtube (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} ostreamtube (@var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} ostreamtube (@var{xyz}, @var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w})
## @deftypefnx {} {} ostreamtube (@dots{}, @var{options})
## @deftypefnx {} {} ostreamtube (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} ostreamtube (@dots{})
## Calculate and display streamtubes.
##
## Streamtubes are approximated by connecting circular crossflow areas
## along a streamline.  The expansion of the flow is determined by the local
## crossflow divergence.
##
## The vector field is given by @code{[@var{u}, @var{v}, @var{w}]} and is
## defined over a rectangular grid given by @code{[@var{x}, @var{y}, @var{z}]}.
## The streamtubes start at the seed points
## @code{[@var{sx}, @var{sy}, @var{sz}]}.
##
## The tubes are colored based on the local vector field strength.
##
## The input parameter @var{options} is a 2-D vector of the form
## @code{[@var{scale}, @var{n}]}.  The first parameter scales the start radius
## of the streamtubes (default 1).  The second parameter specifies the number
## of vertices that are used to construct the tube circumference (default 20).
##
## @code{ostreamtube} can be called with a cell array containing pre-computed
## streamline data.  To do this, @var{xyz} must be created with the
## @code{stream3} function.  This option is useful if you need to alter the
## integrator step size or the maximum number of vertices of the streamline.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the plot
## objects created for each streamtube.
##
## Example:
##
## @example
## @group
## [x, y, z] = meshgrid (-1:0.1:1, -1:0.1:1, -3:0.1:0);
## u = -x / 10 - y;
## v = x - y / 10;
## w = - ones (size (x)) / 10;
## ostreamtube (x, y, z, u, v, w, 1, 0, 0);
## @end group
## @end example
##
## @seealso{stream3, streamline, streamribbon, streamtube}
## @end deftypefn

## References:
##
## @inproceedings{
##    title = {Visualization of 3-D vector fields - Variations on a stream},
##    author = {Dave Darmofal and Robert Haimes},
##    year = {1992}
## }
##
## @article{
##    title = {Efficient streamline, streamribbon, and streamtube constructions on unstructured grids},
##    author = {Ueng, Shyh-Kuang and Sikorski, C. and Ma, Kwan-Liu},
##    year = {1996},
##    month = {June},
##    publisher = {IEEE Transactions on Visualization and Computer Graphics},
## }

function h = ostreamtube (varargin)

  [hax, varargin, nargin] = __plt_get_axis_arg__ ("ostreamtube", varargin{:});

  options = [];
  xyz = [];
  switch (nargin)
    case 6
      [u, v, w, spx, spy, spz] = varargin{:};
      [m, n, p] = size (u);
      [x, y, z] = meshgrid (1:n, 1:m, 1:p);
    case 7
      if (iscell (varargin{1}))
        [xyz, x, y, z, u, v, w] = varargin{:};
      else
        [u, v, w, spx, spy, spz, options] = varargin{:};
        [m, n, p] = size (u);
        [x, y, z] = meshgrid (1:n, 1:m, 1:p);
      endif
    case 8
      [xyz, x, y, z, u, v, w, options] = varargin{:};
    case 9
      [x, y, z, u, v, w, spx, spy, spz] = varargin{:};
    case 10
      [x, y, z, u, v, w, spx, spy, spz, options] = varargin{:};
    otherwise
      print_usage ();
  endswitch

  scale = 1;
  num_circum = 20;
  if (! isempty (options))
    switch (numel (options))
      case 1
        scale = options(1);
      case 2
        scale = options(1);
        num_circum = options(2);
      otherwise
        error ("ostreamtube: OPTIONS must be a 1- or 2-element vector");
    endswitch

    if (! isreal (scale) || scale <= 0)
      error ("ostreamtube: SCALE must be a real scalar > 0");
    endif
    if (! isreal (num_circum) || num_circum < 3)
      error ("ostreamtube: number of tube vertices N must be greater than 2");
    endif
    num_circum = fix (num_circum);
  endif

  if (isempty (hax))
    hax = gca ();
  else
    hax = hax(1);
  endif

  if (isempty (xyz))
    xyz = stream3 (x, y, z, u, v, w, spx, spy, spz, 0.2);
  endif

  div = divergence (x, y, z, u, v, w);

  ## Use the bounding box diagonal to determine the starting radius
  mxx = mnx = mxy = mny = mxz = mnz = [];
  j = 1;
  for i = 1 : length (xyz)
    sl = xyz{i};
    if (! isempty (sl))
      slx = sl(:,1); sly = sl(:,2); slz = sl(:,3);
      mxx(j) = max (slx); mnx(j) = min (slx);
      mxy(j) = max (sly); mny(j) = min (sly);
      mxz(j) = max (slz); mnz(j) = min (slz);
      j += 1;
    endif
  endfor
  dx = max (mxx) - min (mnx);
  dy = max (mxy) - min (mny);
  dz = max (mxz) - min (mnz);
  rstart = scale * sqrt (dx*dx + dy*dy + dz*dz) / 25;

  h = [];
  for i = 1 : length (xyz)
    sl = xyz{i};
    num_vertices = rows (sl);
    if (! isempty (sl) && num_vertices > 2)

      usl = interp3 (x, y, z, u, sl(:,1), sl(:,2), sl(:,3));
      vsl = interp3 (x, y, z, v, sl(:,1), sl(:,2), sl(:,3));
      wsl = interp3 (x, y, z, w, sl(:,1), sl(:,2), sl(:,3));
      vv = sqrt (usl.*usl + vsl.*vsl + wsl.*wsl);

      div_sl = interp3 (x, y, z, div, sl(:,1), sl(:,2), sl(:,3));
      is_singular_div = find (isnan (div_sl), 1, "first");

      if (! isempty (is_singular_div))
        max_vertices = is_singular_div - 1;
      else
        max_vertices = num_vertices;
      endif

      if (max_vertices > 2)

        htmp = plottube (hax, sl, div_sl, vv, max_vertices, ...
                         rstart, num_circum);
        h = [h; htmp];

      endif
    endif
  endfor

endfunction

function h = plottube (hax, sl, div_sl, vv, max_vertices, rstart, num_circum)

  phi = linspace (0, 2*pi, num_circum);
  cp = cos (phi);
  sp = sin (phi);

  ## 1st streamline segment
  X0 = sl(1,:);
  X1 = sl(2,:);
  R = X1 - X0;
  RE = R / norm (R);

  ## Guide point and its rotation to create a segment
  KE = get_normal1 (RE);
  K = rstart * KE;
  XS0 = rotation (K, RE, cp, sp) + repmat (X0.', 1, num_circum);

  ## End of first segment
  ract = rstart * exp (0.5 * div_sl(2) * norm (R) / vv(2)) * ...
                  sqrt (vv(1) / vv(2));
  rold = ract;
  K = ract * KE;
  XS = rotation (K, RE, cp, sp) + repmat (X1.', 1, num_circum);

  px = zeros (num_circum, max_vertices);
  py = zeros (num_circum, max_vertices);
  pz = zeros (num_circum, max_vertices);
  pc = zeros (num_circum, max_vertices);

  px(:,1) = XS0(1,:).';
  py(:,1) = XS0(2,:).';
  pz(:,1) = XS0(3,:).';
  pc(:,1) = vv(1) * ones (num_circum, 1);

  px(:,2) = XS(1,:).';
  py(:,2) = XS(2,:).';
  pz(:,2) = XS(3,:).';
  pc(:,2) = vv(2) * ones (num_circum, 1);

  for i = 3 : max_vertices

    ## Next streamline segment
    X0 = X1;
    X1 = sl(i,:);
    R = X1 - X0;
    RE = R / norm (R);

    ## Tube radius
    ract = rold * exp (0.5 * div_sl(i) * norm (R) / vv(i)) * ...
                  sqrt (vv(i-1) / vv(i));
    rold = ract;

    ## Project KE onto RE and get the difference in order to transport
    ## the normal vector KE along the vertex array
    Kp = KE - RE * dot (KE, RE);
    KE = Kp / norm (Kp);
    K = ract * KE;

    ## Rotate around RE and collect surface patches
    XS = rotation (K, RE, cp, sp) + repmat (X1.', 1, num_circum);

    px(:,i) = XS(1,:).';
    py(:,i) = XS(2,:).';
    pz(:,i) = XS(3,:).';
    pc(:,i) = vv(i) * ones (num_circum, 1);

  endfor

  h = surface (hax, px, py, pz, pc);

endfunction

## Arbitrary N normal to X
function N = get_normal1 (X)

  if ((X(3) == 0) && (X(1) == -X(2)))
    N = [(- X(2) - X(3)), X(1), X(1)];
  else
    N = [X(3), X(3), (- X(1) - X(2))];
  endif

  N /= norm (N);

endfunction

## Rotate X around U where |U| = 1
## cp = cos (angle), sp = sin (angle)
function Y = rotation (X, U, cp, sp)

  ux = U(1);
  uy = U(2);
  uz = U(3);

  Y(1,:) = X(1) * (cp + ux * ux * (1 - cp)) + ...
           X(2) * (ux * uy * (1 - cp) - uz * sp) + ...
           X(3) * (ux * uz * (1 - cp) + uy * sp);

  Y(2,:) = X(1) * (uy * ux * (1 - cp) + uz * sp) + ...
           X(2) * (cp + uy * uy * (1 - cp)) + ...
           X(3) * (uy * uz * (1 - cp) - ux * sp);

  Y(3,:) = X(1) * (uz * ux * (1 - cp) - uy * sp) + ...
           X(2) * (uz * uy * (1 - cp) + ux * sp) + ...
           X(3) * (cp + uz * uz * (1 - cp));

endfunction


%!demo
%! clf;
%! [x, y, z] = meshgrid (-1:0.1:1, -1:0.1:1, -3.5:0.1:0);
%! a = 0.1;
%! b = 0.1;
%! u = - a * x - y;
%! v = x - a * y;
%! w = - b * ones (size (x));
%! sx = 1.0;
%! sy = 0.0;
%! sz = 0.0;
%! ostreamtube (x, y, z, u, v, w, sx, sy, sz, [1.2, 30]);
%! colormap (jet);
%! shading interp;
%! view ([-47, 24]);
%! camlight ();
%! lighting gouraud;
%! grid on;
%! view (3);
%! axis equal;
%! set (gca, "cameraviewanglemode", "manual");
%! title ("Spiral Sink");

%!demo
%! clf;
%! [x, y, z] = meshgrid (-2:0.5:2);
%! t = sqrt (1.0./(x.^2 + y.^2 + z.^2)).^3;
%! u = - x.*t;
%! v = - y.*t;
%! w = - z.*t;
%! [sx, sy, sz] = meshgrid (-2:4:2);
%! xyz = stream3 (x, y, z, u, v, w, sx, sy, sz, [0.1, 60]);
%! ostreamtube (xyz, x, y, z, u, v, w, [2, 50]);
%! colormap (jet);
%! shading interp;
%! view ([-47, 24]);
%! camlight ();
%! lighting gouraud;
%! grid on;
%! view (3);
%! axis equal;
%! set (gca, "cameraviewanglemode", "manual");
%! title ("Integration Towards Sink");

## Test input validation
%!error <Invalid call> ostreamtube ()
%!error <Invalid call> ostreamtube (1)
%!error <Invalid call> ostreamtube (1,2)
%!error <Invalid call> ostreamtube (1,2,3)
%!error <Invalid call> ostreamtube (1,2,3,4)
%!error <Invalid call> ostreamtube (1,2,3,4,5)
%!error <OPTIONS must be a 1- or 2-element> ostreamtube (1,2,3,4,5,6,[1,2,3])
%!error <SCALE must be a real scalar . 0> ostreamtube (1,2,3,4,5,6,[1i])
%!error <SCALE must be a real scalar . 0> ostreamtube (1,2,3,4,5,6,[0])
%!error <N must be greater than 2> ostreamtube (1,2,3,4,5,6,[1,1i])
%!error <N must be greater than 2> ostreamtube (1,2,3,4,5,6,[1,2])