view scripts/plot/draw/tetramesh.m @ 32062:ada96a467a28

quiver: Improve plotting with non-float numeric inputs (bug #59695) * scripts/plot/draw/private/__quiver__.m: Change firstnonnumeric check to look for char instead of numeric to allow for logical inputs. Recast all inputs up to firstnonnumeric as doubles. Check if firstnonnumeric element is 'off' and if so set scale factor to 0 and increment firstnonnumeric. * scripts/plot/draw/quiver.m: Update docstring to include scaling factor option 'off'. Add BIST for int and logical input types. * scripts/plot/draw/quiver3.m: Update docstring to include scaling factor option 'off'. Add BISTs for too-few inputs. * etc/NEWS.9.md: Appended details of changes to quiver note under General Improvements and noted it also applies to quiver3.
author Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
date Wed, 26 Apr 2023 17:18:50 -0400
parents 597f3ee61a48
children 2e484f9f1f18
line wrap: on
line source

########################################################################
##
## Copyright (C) 2012-2023 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} tetramesh (@var{T}, @var{X})
## @deftypefnx {} {} tetramesh (@var{T}, @var{X}, @var{C})
## @deftypefnx {} {} tetramesh (@dots{}, @var{property}, @var{val}, @dots{})
## @deftypefnx {} {@var{h} =} tetramesh (@dots{})
## Display the tetrahedrons defined in the m-by-4 matrix @var{T} as 3-D
## patches.
##
## @var{T} is typically the output of a Delaunay triangulation of a 3-D set
## of points.  Every row of @var{T} contains four indices into the n-by-3
## matrix @var{X} of the vertices of a tetrahedron.  Every row in @var{X}
## represents one point in 3-D space.
##
## The vector @var{C} specifies the color of each tetrahedron as an index
## into the current colormap.  The default value is 1:m where m is the number
## of tetrahedrons; the indices are scaled to map to the full range of the
## colormap.  If there are more tetrahedrons than colors in the colormap then
## the values in @var{C} are cyclically repeated.
##
## Calling @code{tetramesh (@dots{}, "property", "value", @dots{})} passes all
## property/value pairs directly to the patch function as additional arguments.
## The full list of properties is documented at @ref{Patch Properties}.
##
## The optional return value @var{h} is a vector of patch handles where each
## handle represents one tetrahedron in the order given by @var{T}.
## A typical use case for @var{h} is to turn the respective patch
## @qcode{"visible"} property @qcode{"on"} or @qcode{"off"}.
##
## Type @code{demo tetramesh} to see examples on using @code{tetramesh}.
## @seealso{trimesh, delaunay, delaunayn, patch}
## @end deftypefn

function h = tetramesh (varargin)

  [reg, prop] = parseparams (varargin);

  if (numel (reg) < 2 || numel (reg) > 3)
    print_usage ();
  endif

  T = reg{1};
  X = reg{2};

  if (! ismatrix (T) || columns (T) != 4)
    error ("tetramesh: T must be an n-by-4 matrix");
  elseif (! ismatrix (X) || columns (X) != 3)
    error ("tetramesh: X must be an n-by-3 matrix");
  endif

  size_T = rows (T);
  cmap = colormap ();

  if (length (reg) < 3)
    size_cmap = rows (cmap);
    C = mod ((1:size_T)' - 1, size_cmap) + 1;
    if (size_T < size_cmap && size_T > 1)
      ## expand to the available range of colors
      C = floor ((C - 1) * (size_cmap - 1) / (size_T - 1)) + 1;
    endif
  else
    C = reg{3};
    if (! isvector (C) || size_T != length (C))
      error ("tetramesh: C must be a vector of the same length as T");
    endif
  endif

  hax = newplot ();

  hvec = zeros (size_T, 1);
  if (strcmp (graphics_toolkit (), "gnuplot"))
    ## Tiny reduction of the tetrahedron size to help gnuplot by
    ## avoiding identical faces with different colors
    for i = 1:size_T
      [th, p] = __shrink__ ([1 2 3 4], X(T(i, :), :), 1 - 1e-7);
      hvec(i) = patch ("Faces", th, "Vertices", p,
                       "FaceColor", cmap(C(i), :), "FaceAlpha", 0.9,
                       prop{:});
    endfor
  else
    ## FLTK does not support FaceAlpha.
    for i = 1:size_T
      th = [1 2 3; 2 3 4; 3 4 1; 4 1 2];
      hvec(i) = patch ("Faces", th, "Vertices", X(T(i, :), :),
                       "FaceColor", cmap(C(i), :), "FaceAlpha", 1.0,
                       prop{:});
    endfor
  endif

  if (! ishold ())
    set (hax, "view", [-37.5, 30]);
  endif

  if (nargout > 0)
    h = hvec;
  endif

endfunction

## shrink the tetrahedron relative to its center of gravity
function [tri, p] = __shrink__ (T, X, sf)
  midpoint = repmat (sum (X(T, :), 1) / 4, 12, 1);
  p = [X([1 2 3], :); X([2 3 4], :); X([3 4 1], :); X([4 1 2], :)];
  p = sf * (p - midpoint) + midpoint;
  tri = reshape (1:12, 3, 4)';
endfunction


%!demo
%! clf;
%! d = [-1 1];
%! [x,y,z] = meshgrid (d, d, d);
%! x = [x(:); 0];
%! y = [y(:); 0];
%! z = [z(:); 0];
%! tetra = delaunay (x, y, z);
%! X = [x(:) y(:) z(:)];
%! colormap (jet (64));
%! h = tetramesh (tetra, X);
%! set (h(1:2:end), "visible", "off");
%! axis equal;
%! view (30, 20);
%! title ({"tetramesh() plot", ...
%!         "colormap = jet (64), every other tetrahedron invisible"});

%!demo
%! clf;
%! d = [-1 1];
%! [x,y,z] = meshgrid (d, d, d);
%! x = [x(:); 0];
%! y = [y(:); 0];
%! z = [z(:); 0];
%! tetra = delaunay (x, y, z);
%! X = [x(:) y(:) z(:)];
%! colormap (gray (256));
%! tetramesh (tetra, X, 21:20:241, "EdgeColor", "w");
%! axis equal;
%! view (30, 20);
%! title ({"tetramesh() plot", ...
%!         "colormap = gray (256) with white edges"});