view libinterp/octave-value/ov-base-int.cc @ 31138:b3ca7f891750

maint: use "m_" prefix for member variables in class octave_base_matrix. * ov-base-int.cc, ov-base-mat.cc, ov-base-mat.h, ov-base.h, ov-bool-mat.cc, ov-bool-mat.h, ov-cell.cc, ov-cell.h, ov-ch-mat.cc, ov-ch-mat.h, ov-cx-mat.cc, ov-cx-mat.h, ov-flt-cx-mat.cc, ov-flt-cx-mat.h, ov-flt-re-mat.cc, ov-flt-re-mat.h, ov-intx.h, ov-re-mat.cc, ov-re-mat.h, ov-str-mat.cc, ov-str-mat.h: use "m_" prefix for member variables in class octave_base_matrix.
author Rik <rik@octave.org>
date Sun, 10 Jul 2022 18:26:24 -0700
parents 83f9f8bda883
children aac27ad79be6
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2004-2022 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

// This file should not include config.h.  It is only included in other
// C++ source files that should have included config.h before including
// this file.

#include <istream>
#include <limits>
#include <ostream>
#include <sstream>
#include <vector>

#include "dNDArray.h"
#include "fNDArray.h"
#include "int8NDArray.h"
#include "int16NDArray.h"
#include "int32NDArray.h"
#include "int64NDArray.h"
#include "uint8NDArray.h"
#include "uint16NDArray.h"
#include "uint32NDArray.h"
#include "uint64NDArray.h"

#include "lo-ieee.h"
#include "lo-utils.h"
#include "mx-base.h"
#include "quit.h"
#include "oct-locbuf.h"

#include "defun.h"
#include "errwarn.h"
#include "ovl.h"
#include "oct-lvalue.h"
#include "oct-hdf5.h"
#include "oct-stream.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-base-scalar.h"
#include "ov-base-scalar.cc"
#include "ov-base-int.h"
#include "ov-int-traits.h"
#include "pr-output.h"
#include "variables.h"

#include "byte-swap.h"
#include "ls-oct-text.h"
#include "ls-utils.h"
#include "ls-hdf5.h"

// We have all the machinery below (octave_base_int_helper and
// octave_base_int_helper_traits) to avoid a few warnings from GCC
// about comparisons always false due to limited range of data types.
// Ugh.  The cure may be worse than the disease.

template <typename T, bool is_signed = true, bool can_be_too_big = true>
struct octave_base_int_helper
{
public:
  static bool
  char_value_out_of_range (T val)
  {
    return val < 0 || val > std::numeric_limits<unsigned char>::max ();
  }
};

template <typename T>
struct octave_base_int_helper<T, false, false>
{
public:
  static bool char_value_out_of_range (T) { return false; }
};

template <typename T>
struct octave_base_int_helper<T, false, true>
{
public:
  static bool char_value_out_of_range (T val)
  {
    return val > std::numeric_limits<unsigned char>::max ();
  }
};

template <typename T>
struct octave_base_int_helper<T, true, false>
{
public:
  static bool char_value_out_of_range (T val) { return val < 0; }
};

// For all types other than char, signed char, and unsigned char, we
// assume that the upper limit for the range of allowable values is
// larger than the range for unsigned char.  If that's not true, we
// are still OK, but will see the warnings again for any other types
// that do not meet this assumption.

template <typename T>
struct octave_base_int_helper_traits
{
  static const bool can_be_larger_than_uchar_max = true;
};

template <>
struct octave_base_int_helper_traits<char>
{
  static const bool can_be_larger_than_uchar_max = false;
};

template <>
struct octave_base_int_helper_traits<signed char>
{
  static const bool can_be_larger_than_uchar_max = false;
};

template <>
struct octave_base_int_helper_traits<unsigned char>
{
  static const bool can_be_larger_than_uchar_max = false;
};

template <typename T>
octave_base_value *
octave_base_int_matrix<T>::try_narrowing_conversion (void)
{
  octave_base_value *retval = nullptr;

  if (this->m_matrix.numel () == 1)
    retval = new typename octave_value_int_traits<T>::scalar_type
               (this->m_matrix (0));

  return retval;
}

template <typename T>
octave_value
octave_base_int_matrix<T>::convert_to_str_internal (bool, bool, char type) const
{
  octave_value retval;
  dim_vector dv = this->dims ();
  octave_idx_type nel = dv.numel ();

  charNDArray chm (dv);

  bool warned = false;

  for (octave_idx_type i = 0; i < nel; i++)
    {
      octave_quit ();

      typename T::element_type tmp = this->m_matrix(i);

      typedef typename T::element_type::val_type val_type;

      val_type ival = tmp.value ();

      static const bool is_signed = std::numeric_limits<val_type>::is_signed;
      static const bool can_be_larger_than_uchar_max
        = octave_base_int_helper_traits<val_type>::can_be_larger_than_uchar_max;

      if (octave_base_int_helper<val_type, is_signed,
          can_be_larger_than_uchar_max>::char_value_out_of_range (ival))
        {
          // FIXME: is there something better we could do?

          ival = 0;

          if (! warned)
            {
              ::warning ("range error for conversion to character value");
              warned = true;
            }
        }
      else
        chm (i) = static_cast<char> (ival);
    }

  retval = octave_value (chm, type);

  return retval;
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_double (void) const
{
  return NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_single (void) const
{
  return FloatNDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_int8 (void) const
{
  return int8NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_int16 (void) const
{
  return int16NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_int32 (void) const
{
  return int32NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_int64 (void) const
{
  return int64NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_uint8 (void) const
{
  return uint8NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_uint16 (void) const
{
  return uint16NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_uint32 (void) const
{
  return uint32NDArray (this->m_matrix);
}

template <typename MT>
octave_value
octave_base_int_matrix<MT>::as_uint64 (void) const
{
  return uint64NDArray (this->m_matrix);
}

template <typename T>
std::string
octave_base_int_matrix<T>::edit_display (const float_display_format& fmt,
                                         octave_idx_type i,
                                         octave_idx_type j) const
{
  std::ostringstream buf;
  octave_print_internal (buf, fmt, this->m_matrix(i, j));
  return buf.str ();
}

template <typename T>
bool
octave_base_int_matrix<T>::save_ascii (std::ostream& os)
{
  dim_vector dv = this->dims ();

  os << "# ndims: " << dv.ndims () << "\n";

  for (int i = 0; i < dv.ndims (); i++)
    os << ' ' << dv(i);

  os << "\n" << this->m_matrix;

  return true;
}

template <typename T>
bool
octave_base_int_matrix<T>::load_ascii (std::istream& is)
{
  int mdims = 0;

  if (! extract_keyword (is, "ndims", mdims, true))
    error ("load: failed to extract number of dimensions");

  if (mdims < 0)
    error ("load: failed to extract number of rows and columns");

  dim_vector dv;
  dv.resize (mdims);

  for (int i = 0; i < mdims; i++)
    is >> dv(i);

  T tmp(dv);

  is >> tmp;

  if (! is)
    error ("load: failed to load matrix constant");

  this->m_matrix = tmp;

  return true;
}

template <typename T>
bool
octave_base_int_matrix<T>::save_binary (std::ostream& os, bool)
{
  dim_vector dv = this->dims ();
  if (dv.ndims () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - dv.ndims ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i=0; i < dv.ndims (); i++)
    {
      tmp = dv(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  os.write (reinterpret_cast<const char *> (this->m_matrix.data ()),
            this->byte_size ());

  return true;
}

template <typename T>
bool
octave_base_int_matrix<T>::load_binary (std::istream& is, bool swap,
                                        octave::mach_info::float_format)
{
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims >= 0)
    return false;

  mdims = - mdims;
  int32_t di;
  dim_vector dv;
  dv.resize (mdims);

  for (int i = 0; i < mdims; i++)
    {
      if (! is.read (reinterpret_cast<char *> (&di), 4))
        return false;
      if (swap)
        swap_bytes<4> (&di);
      dv(i) = di;
    }

  // Convert an array with a single dimension to be a row vector.
  // Octave should never write files like this, other software
  // might.

  if (mdims == 1)
    {
      mdims = 2;
      dv.resize (mdims);
      dv(1) = dv(0);
      dv(0) = 1;
    }

  T m (dv);

  if (! is.read (reinterpret_cast<char *> (m.fortran_vec ()), m.byte_size ()))
    return false;

  if (swap)
    {
      int nel = dv.numel ();
      int bytes = nel / m.byte_size ();
      for (int i = 0; i < nel; i++)
        switch (bytes)
          {
          case 8:
            swap_bytes<8> (&m(i));
            break;
          case 4:
            swap_bytes<4> (&m(i));
            break;
          case 2:
            swap_bytes<2> (&m(i));
            break;
          case 1:
          default:
            break;
          }
    }

  this->m_matrix = m;
  return true;
}

template <typename T>
bool
octave_base_int_matrix<T>::save_hdf5_internal (octave_hdf5_id loc_id,
                                               octave_hdf5_id save_type,
                                               const char *name, bool)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  hid_t save_type_hid = save_type;
  dim_vector dv = this->dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.ndims ();
  hid_t space_hid, data_hid;
  space_hid = data_hid = -1;
  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv(rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, nullptr);

  if (space_hid < 0) return false;
#if defined (HAVE_HDF5_18)
  data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT,
                        octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid,
                        octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }

  retval = H5Dwrite (data_hid, save_type_hid, octave_H5S_ALL, octave_H5S_ALL,
                     octave_H5P_DEFAULT, this->m_matrix.data ()) >= 0;

  H5Dclose (data_hid);
  H5Sclose (space_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (save_type);
  octave_unused_parameter (name);

  this->warn_save ("hdf5");
#endif

  return retval;
}

template <typename T>
bool
octave_base_int_matrix<T>::load_hdf5_internal (octave_hdf5_id loc_id,
                                               octave_hdf5_id save_type,
                                               const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  hid_t save_type_hid = save_type;
  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    this->m_matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if defined (HAVE_HDF5_18)
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Sclose (space_id);
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  T m (dv);
  if (H5Dread (data_hid, save_type_hid, octave_H5S_ALL, octave_H5S_ALL,
               octave_H5P_DEFAULT, m.fortran_vec ()) >= 0)
    {
      retval = true;
      this->m_matrix = m;
    }

  H5Sclose (space_id);
  H5Dclose (data_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (save_type);
  octave_unused_parameter (name);

  this->warn_load ("hdf5");
#endif

  return retval;
}

template <typename T>
void
octave_base_int_matrix<T>::print_raw (std::ostream& os,
                                      bool pr_as_read_syntax) const
{
  octave_print_internal (os, this->m_matrix, pr_as_read_syntax,
                         this->current_print_indent_level ());
}

template <typename T>
octave_value
octave_base_int_scalar<T>::convert_to_str_internal (bool, bool, char type) const
{
  octave_value retval;

  T tmp = this->scalar;

  typedef typename T::val_type val_type;

  val_type ival = tmp.value ();

  static const bool is_signed = std::numeric_limits<val_type>::is_signed;
  static const bool can_be_larger_than_uchar_max
    = octave_base_int_helper_traits<val_type>::can_be_larger_than_uchar_max;

  if (octave_base_int_helper<val_type, is_signed,
      can_be_larger_than_uchar_max>::char_value_out_of_range (ival))
    {
      // FIXME: is there something better we could do?

      ival = 0;

      ::warning ("range error for conversion to character value");
    }
  else
    retval = octave_value (std::string (1, static_cast<char> (ival)), type);

  return retval;
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_double (void) const
{
  return static_cast<double> (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_single (void) const
{
  return static_cast<float> (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_int8 (void) const
{
  return octave_int8 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_int16 (void) const
{
  return octave_int16 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_int32 (void) const
{
  return octave_int32 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_int64 (void) const
{
  return octave_int64 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_uint8 (void) const
{
  return octave_uint8 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_uint16 (void) const
{
  return octave_uint16 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_uint32 (void) const
{
  return octave_uint32 (this->scalar);
}

template <typename T>
octave_value
octave_base_int_scalar<T>::as_uint64 (void) const
{
  return octave_uint64 (this->scalar);
}

template <typename ST>
std::string
octave_base_int_scalar<ST>::edit_display (const float_display_format& fmt,
                                          octave_idx_type,
                                          octave_idx_type) const
{
  std::ostringstream buf;
  octave_print_internal (buf, fmt, this->scalar);
  return buf.str ();
}

template <typename T>
bool
octave_base_int_scalar<T>::save_ascii (std::ostream& os)
{
  os << this->scalar << "\n";
  return true;
}

template <typename T>
bool
octave_base_int_scalar<T>::load_ascii (std::istream& is)
{
  is >> this->scalar;
  if (! is)
    error ("load: failed to load scalar constant");

  return true;
}

template <typename T>
bool
octave_base_int_scalar<T>::save_binary (std::ostream& os, bool)
{
  os.write (reinterpret_cast<char *> (&(this->scalar)), this->byte_size ());
  return true;
}

template <typename T>
bool
octave_base_int_scalar<T>::load_binary (std::istream& is, bool swap,
                                        octave::mach_info::float_format)
{
  T tmp;

  if (! is.read (reinterpret_cast<char *> (&tmp), this->byte_size ()))
    return false;

  if (swap)
    swap_bytes<sizeof (T)> (&tmp);

  this->scalar = tmp;

  return true;
}

template <typename T>
bool
octave_base_int_scalar<T>::save_hdf5_internal (octave_hdf5_id loc_id,
                                               octave_hdf5_id save_type,
                                               const char *name, bool)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  hid_t save_type_hid = save_type;
  hsize_t dimens[3] = {0};
  hid_t space_hid, data_hid;
  space_hid = data_hid = -1;

  space_hid = H5Screate_simple (0, dimens, nullptr);
  if (space_hid < 0) return false;

#if defined (HAVE_HDF5_18)
  data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid,
                        octave_H5P_DEFAULT, octave_H5P_DEFAULT,
                        octave_H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid,
                        octave_H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }

  retval = H5Dwrite (data_hid, save_type_hid, octave_H5S_ALL, octave_H5S_ALL,
                     octave_H5P_DEFAULT, &(this->scalar)) >= 0;

  H5Dclose (data_hid);
  H5Sclose (space_hid);

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (save_type);
  octave_unused_parameter (name);

  this->warn_save ("hdf5");
#endif

  return retval;
}

template <typename T>
bool
octave_base_int_scalar<T>::load_hdf5_internal (octave_hdf5_id loc_id,
                                               octave_hdf5_id save_type,
                                               const char *name)
{
#if defined (HAVE_HDF5)

  hid_t save_type_hid = save_type;
#if defined (HAVE_HDF5_18)
  hid_t data_hid = H5Dopen (loc_id, name, octave_H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank != 0)
    {
      H5Dclose (data_hid);
      return false;
    }

  T tmp;
  if (H5Dread (data_hid, save_type_hid, octave_H5S_ALL, octave_H5S_ALL,
               octave_H5P_DEFAULT, &tmp) < 0)
    {
      H5Dclose (data_hid);
      return false;
    }

  this->scalar = tmp;

  H5Dclose (data_hid);

  return true;

#else
  octave_unused_parameter (loc_id);
  octave_unused_parameter (save_type);
  octave_unused_parameter (name);

  this->warn_load ("hdf5");

  return false;
#endif
}