view libinterp/corefcn/stream-euler.cc @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents f2b89a2e20b6
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

/*

 References:

 @article{
    title = {Particle Tracing Algorithms for 3D Curvilinear Grids},
    year = {2000},
    author = {Nielson, Gregory and Uller, H. and Sadarjoen, I. and Walsum, Theo and Hin, Andrea and Post, Frits}
 }

 @article{
    title = {Sources of error in the graphical analysis of CFD results},
    publisher = {Journal of Scientific Computing},
    year = {1988},
    volume = {3},
    number = {2},
    pages = {149--164},
    author = {Buning, Pieter G.},
 }

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "defun.h"
#include "error.h"
#include "ovl.h"

// Coordinates of a point in C-Space (unit square mesh)

typedef struct
{
  double x, y;
} Vector2;

// The integer value and the fractional value from a point in C-Space.
// Equivalent to the cell index the point is located in and the local
// coordinates of the point in the cell.

typedef struct
{
  double fcx, fcy;
  signed long idx, idy;
} Cell2;

typedef struct
{
  double x, y, z;
} Vector3;

typedef struct
{
  double fcx, fcy, fcz;
  signed long idx, idy, idz;
} Cell3;

static inline void
number_to_fractional (signed long *id, double *fc, const double u)
{
  *id = floor (u);
  *fc = u - *id;
}

static inline octave_idx_type
handle_border_index (const octave_idx_type id, const octave_idx_type N)
{
  return (id < N - 1 ? id : N - 2);
}

static inline void
handle_border (octave_idx_type *id2, double *fc2, const octave_idx_type id1,
               const double fc1, const octave_idx_type N)
{
  if (id1 < N - 1)
    {
      *id2 = id1;
      *fc2 = fc1;
    }
  else
    {
      *id2 = N - 2;
      *fc2 = 1.0;
    }
}

static inline double
bilinear (const double u11, const double u21, const double u12,
          const double u22, const double x, const double y)
{
  return (u11 * (1-x) * (1-y) +
          u21 * x * (1-y) +
          u12 * (1-x) * y +
          u22 * x * y);
}

static inline Cell2
vector_to_cell2d (const Vector2 X)
{
  Cell2 Z;

  number_to_fractional (&Z.idx, &Z.fcx, X.x);
  number_to_fractional (&Z.idy, &Z.fcy, X.y);

  return (Z);
}

static inline bool
is_in_definition_set2d (const Cell2 X, const octave_idx_type cols,
                        const octave_idx_type rows)
{
 return ( (((X.idx >= 0) && (X.idx < cols-1)) ||
           ((X.idx == cols-1) && (X.fcx == 0.0))) &&
          (((X.idy >= 0) && (X.idy < rows-1)) ||
           ((X.idy == rows-1) && (X.fcy == 0.0))) );
}

static inline Vector2
add2d (const Cell2 X, const Vector2 Y)
{
  Vector2 Z = {X.idx + X.fcx + Y.x,
               X.idy + X.fcy + Y.y};

  return (Z);
}

static inline Vector2
vector_interpolation2d (const Cell2 X, const Matrix& u, const Matrix& v,
                        const octave_idx_type cols, const octave_idx_type rows)
{
  Vector2 V;
  double fcx, fcy;
  octave_idx_type idx, idy;

  handle_border (&idx, &fcx, X.idx, X.fcx, cols);
  handle_border (&idy, &fcy, X.idy, X.fcy, rows);

  V.x = bilinear (u(idy, idx), u(idy, idx+1), u(idy+1, idx),
                  u(idy+1, idx+1), fcx, fcy);
  V.y = bilinear (v(idy, idx), v(idy, idx+1), v(idy+1, idx),
                  v(idy+1, idx+1), fcx, fcy);

  return (V);
}

// Apply the Jacobian matrix on the vector V.
// The step vector length is set to h.

static inline Vector2
calculate_step_vector2d (const Cell2 X, const Vector2 V,
                         const RowVector& tx, const RowVector& ty,
                         const octave_idx_type cols, const octave_idx_type rows,
                         const double h)
{
  Vector2 S;

  const octave_idx_type idx = handle_border_index (X.idx, cols);
  const octave_idx_type idy = handle_border_index (X.idy, rows);

  const double x = V.x * tx(idx);
  const double y = V.y * ty(idy);
  const double n = 1.0 / sqrt (x*x + y*y);
  S.x = h * n * x;
  S.y = h * n * y;

  return (S);
}

static inline bool
is_singular2d (const Vector2 V)
{
  return ((octave::math::isnan (V.x) || octave::math::isnan (V.y)) ||
          ((V.x == 0) && (V.y == 0)));
}

static void
euler2d (const octave_idx_type cols, const octave_idx_type rows,
         const Matrix& u, const Matrix& v,
         const RowVector& tx, const RowVector& ty,
         const double zeta, const double xi,
         const double h, const octave_idx_type maxnverts,
         Matrix& buffer, octave_idx_type *nverts)
{
  Vector2 V0, V1, S0, X1, Xnxt, S1;
  const Vector2 X0 = {zeta, xi};
  Cell2 X0f, X1f;

  octave_idx_type i = 0;

  buffer(i, 0) = X0.x;
  buffer(i, 1) = X0.y;

  X0f = vector_to_cell2d (X0);
  while (true)
    {
      if (! is_in_definition_set2d (X0f, cols, rows))
        break;

      V0 = vector_interpolation2d (X0f, u, v, cols, rows);
      if (is_singular2d (V0))
        break;

      S0 = calculate_step_vector2d (X0f, V0, tx, ty, cols, rows, h);

      X1 = add2d (X0f, S0);
      X1f = vector_to_cell2d (X1);
      if (! is_in_definition_set2d (X1f, cols, rows))
        break;

      V1 = vector_interpolation2d (X1f, u, v, cols, rows);
      if (is_singular2d (V1))
        break;

      S1 = calculate_step_vector2d (X1f, V1, tx, ty, cols, rows, h);

      // Runge Kutta - Heun's Scheme
      const Vector2 S = {0.5 * (S0.x + S1.x),
                         0.5 * (S0.y + S1.y)};
      Xnxt = add2d (X0f, S);

      X0f = vector_to_cell2d (Xnxt);
      if (! is_in_definition_set2d (X0f, cols, rows))
        break;

      i++;
      buffer(i, 0) = Xnxt.x;
      buffer(i, 1) = Xnxt.y;

      if (i + 1 >= maxnverts)
        break;
    }

  *nverts = i + 1;
}

static inline double
trilinear (const double u111, const double u211, const double u121,
           const double u221, const double u112, const double u212,
           const double u122, const double u222,
           const double x, const double y, const double z)
{
  return (u111 * (1-x) * (1-y) * (1-z) +
          u211 * x * (1-y) * (1-z) +
          u121 * (1-x) * y * (1-z) +
          u221 * x * y * (1-z) +
          u112 * (1-x) * (1-y) * z +
          u212 * x * (1-y) * z +
          u122 * (1-x) * y * z +
          u222 * x * y * z);
}

static inline Cell3
vector_to_cell3d (const Vector3 X)
{
  Cell3 Z;

  number_to_fractional (&Z.idx, &Z.fcx, X.x);
  number_to_fractional (&Z.idy, &Z.fcy, X.y);
  number_to_fractional (&Z.idz, &Z.fcz, X.z);

  return (Z);
}

static inline bool
is_in_definition_set3d (const Cell3 X, const octave_idx_type nx,
                        const octave_idx_type ny, const octave_idx_type nz)
{
  return ( (((X.idx >= 0) && (X.idx < nx-1)) ||
            ((X.idx == nx-1) && (X.fcx == 0.0))) &&
           (((X.idy >= 0) && (X.idy < ny-1)) ||
            ((X.idy == ny-1) && (X.fcy == 0.0))) &&
           (((X.idz >= 0) && (X.idz < nz-1)) ||
            ((X.idz == nz-1) && (X.fcz == 0.0))) );
}

static inline Vector3
add3d (const Cell3 X, const Vector3 Y)
{
  Vector3 Z = {X.idx + X.fcx + Y.x,
               X.idy + X.fcy + Y.y,
               X.idz + X.fcz + Y.z};

  return (Z);
}

static inline Vector3
vector_interpolation3d (const Cell3 X, const NDArray& u, const NDArray& v,
                        const NDArray& w, const octave_idx_type nx,
                        const octave_idx_type ny, const octave_idx_type nz)
{
  Vector3 V;
  double fcx, fcy, fcz;
  octave_idx_type idx, idy, idz;

  handle_border (&idx, &fcx, X.idx, X.fcx, nx);
  handle_border (&idy, &fcy, X.idy, X.fcy, ny);
  handle_border (&idz, &fcz, X.idz, X.fcz, nz);

  V.x = trilinear (u(idy, idx, idz), u(idy, idx+1, idz),
                   u(idy+1, idx, idz), u(idy+1, idx+1, idz),
                   u(idy, idx, idz+1), u(idy, idx+1, idz+1),
                   u(idy+1, idx, idz+1), u(idy+1, idx+1, idz+1),
                   fcx, fcy, fcz);
  V.y = trilinear (v(idy, idx, idz), v(idy, idx+1, idz),
                   v(idy+1, idx, idz), v(idy+1, idx+1, idz),
                   v(idy, idx, idz+1), v(idy, idx+1, idz+1),
                   v(idy+1, idx, idz+1), v(idy+1, idx+1, idz+1),
                   fcx, fcy, fcz);
  V.z = trilinear (w(idy, idx, idz), w(idy, idx+1, idz),
                   w(idy+1, idx, idz), w(idy+1, idx+1, idz),
                   w(idy, idx, idz+1), w(idy, idx+1, idz+1),
                   w(idy+1, idx, idz+1), w(idy+1, idx+1, idz+1),
                   fcx, fcy, fcz);

  return (V);
}

static inline Vector3
calculate_step_vector3d (const Cell3 X, const Vector3 V,
                         const RowVector& tx, const RowVector& ty, const RowVector& tz,
                         const octave_idx_type nx, const octave_idx_type ny,
                         const octave_idx_type nz, const double h)
{
  Vector3 S;

  const octave_idx_type idx = handle_border_index (X.idx, nx);
  const octave_idx_type idy = handle_border_index (X.idy, ny);
  const octave_idx_type idz = handle_border_index (X.idz, nz);

  const double x = V.x * tx(idx);
  const double y = V.y * ty(idy);
  const double z = V.z * tz(idz);
  const double n = 1.0 / sqrt (x*x + y*y + z*z);
  S.x = h * n * x;
  S.y = h * n * y;
  S.z = h * n * z;

  return (S);
}

static inline bool
is_singular3d (const Vector3 V)
{
  return ((octave::math::isnan (V.x) || octave::math::isnan (V.y) ||
           octave::math::isnan (V.z)) ||
          ((V.x == 0) && (V.y == 0) && (V.z == 0)));
}

static void
euler3d (const octave_idx_type nx, const octave_idx_type ny, const octave_idx_type nz,
         const NDArray& u, const NDArray& v, const NDArray& w,
         const RowVector& tx, const RowVector& ty, const RowVector& tz,
         const double zeta, const double xi, const double rho,
         const double h, const octave_idx_type maxnverts,
         Matrix& buffer, octave_idx_type *nverts)
{
  Vector3 V0, V1, S0, X1, Xnxt, S1;
  const Vector3 X0 = {zeta, xi, rho};
  Cell3 X0f, X1f;

  octave_idx_type i = 0;
  buffer(i, 0) = X0.x;
  buffer(i, 1) = X0.y;
  buffer(i, 2) = X0.z;

  X0f = vector_to_cell3d (X0);
  while (true)
    {
      if (! is_in_definition_set3d (X0f, nx, ny, nz))
        break;

      V0 = vector_interpolation3d (X0f, u, v, w, nx, ny, nz);
      if (is_singular3d (V0))
        break;

      S0 = calculate_step_vector3d (X0f, V0, tx, ty, tz, nx, ny, nz, h);

      X1 = add3d (X0f, S0);

      X1f = vector_to_cell3d (X1);
      if (! is_in_definition_set3d (X1f, nx, ny, nz))
        break;

      V1 = vector_interpolation3d (X1f, u, v, w, nx, ny, nz);
      if (is_singular3d (V1))
        break;

      S1 = calculate_step_vector3d (X1f, V1, tx, ty, tz, nx, ny, nz, h);

      // Runge Kutta - Heun's Scheme
      const Vector3 S = {0.5 * (S0.x + S1.x),
                         0.5 * (S0.y + S1.y),
                         0.5 * (S0.z + S1.z)};
      Xnxt = add3d (X0f, S);

      X0f = vector_to_cell3d (Xnxt);
      if (! is_in_definition_set3d (X0f, nx, ny, nz))
        break;

      i++;
      buffer(i, 0) = Xnxt.x;
      buffer(i, 1) = Xnxt.y;
      buffer(i, 2) = Xnxt.z;

      if (i + 1 >= maxnverts)
        break;

    }

  *nverts = i + 1;
}

static octave_value
streameuler2d_internal (const octave_value_list& args)
{

  const int nargin = args.length ();
  if (nargin != 8)
    print_usage ();

  const Matrix U = args(0).matrix_value ();
  const Matrix V = args(1).matrix_value ();
  const RowVector TX = args(2).row_vector_value ();
  const RowVector TY = args(3).row_vector_value ();
  const double zeta = args(4).double_value ();
  const double xi = args(5).double_value ();
  const double h = args(6).double_value ();
  const octave_idx_type maxnverts = args(7).idx_type_value ();

  const octave_idx_type rows = U.rows ();
  const octave_idx_type cols = U.columns ();

  octave_idx_type nverts;
  Matrix buffer (maxnverts, 2);

  euler2d (cols, rows, U, V, TX, TY, zeta, xi, h, maxnverts,
           buffer, &nverts);

  Matrix xy = buffer.extract (0, 0, nverts-1, 1);

  return octave_value (xy);
}

static octave_value
streameuler3d_internal (const octave_value_list& args, const char *fcn)
{

  const int nargin = args.length ();
  if (nargin != 11)
    print_usage ();

  const NDArray U = args(0).array_value ();
  const NDArray V = args(1).array_value ();
  const NDArray W = args(2).array_value ();
  const RowVector TX = args(3).row_vector_value ();
  const RowVector TY = args(4).row_vector_value ();
  const RowVector TZ = args(5).row_vector_value ();
  const double zeta = args(6).double_value ();
  const double xi = args(7).double_value ();
  const double rho = args(8).double_value ();
  const double h = args(9).double_value ();
  const octave_idx_type maxnverts = args(10).idx_type_value ();

  const dim_vector dims = args(0).dims ();
  const int ndims = dims.ndims ();
  if (ndims != 3)
    error ("%s: dimension must be 3", fcn);

  octave_idx_type nverts;
  Matrix buffer (maxnverts, 3);

  euler3d (dims(1), dims(0), dims(2), U, V, W, TX, TY, TZ, zeta, xi, rho,
           h, maxnverts, buffer, &nverts);

  Matrix xyz = buffer.extract (0, 0, nverts-1, 2);

  return octave_value (xyz);
}

DEFUN (__streameuler2d__, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {} __streameuler2d__ (@var{U}, @var{V}, @var{TX}, @var{TY}, @var{ZETA}, @var{XI}, @var{H}, @var{MAXNVERTS})
Calculates the streamline in a vector field @code{[@var{U}, @var{V}]} starting
from a seed point at position @code{[@var{ZETA}, @var{XI}]}.  The integrator
used is Heun's Scheme.  The step size can be controlled by @var{H}.  The
Jacobian matrix can be defined for each grid cell by
@code{[@var{TX}, @var{TY}]}.

@seealso{streamline, stream2, stream3, __streameuler3d__}
@end deftypefn */)
{
  return streameuler2d_internal (args);
}

DEFUN (__streameuler3d__, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {} __streameuler3d__ (@var{U}, @var{V}, @var{W}, @var{TX}, @var{TY}, @var{TZ}, @var{ZETA}, @var{XI}, @var{RHO}, @var{H}, @var{MAXNVERTS})
Calculates the streamline in a vector field @code{[@var{U}, @var{V}, @var{W}]}
starting from a seed point at position
@code{[@var{ZETA}, @var{XI}, @var{RHO}]}.  The integrator used is Heun's
Scheme.  The step size can be controlled by @var{H}.  The Jacobian matrix can
be defined for each grid cell by @code{[@var{TX}, @var{TY}, @var{TZ}]}.

@seealso{streamline, stream2, stream3, __streameuler2d__}
@end deftypefn */)
{
  return streameuler3d_internal (args, "__streameuler3d__");
}