view libinterp/parse-tree/jit-typeinfo.h @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 396996f1dad0
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 2012-2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

// Author: Max Brister <max@2bass.com>

#if ! defined (octave_jit_typeinfo_h)
#define octave_jit_typeinfo_h 1

#include "octave-config.h"

#if defined (HAVE_LLVM)

#include <map>
#include <vector>

#include "Range.h"
#include "jit-util.h"

namespace octave
{
  class jit_typeinfo;
  class jit_module;

  // Defines the type system used by jit and a singleton class, jit_typeinfo, to
  // manage the types.
  //
  // FIXME:
  // Operations are defined and implemented in jit_typeinfo.  Eventually they
  // should be moved elsewhere. (just like with octave_typeinfo)

  // jit_range is compatible with the llvm range structure
  struct
  jit_range
  {
    jit_range (const Range& from)
      : m_base (from.base ()), m_limit (from.limit ()), m_inc (from.inc ()),
        m_nelem (from.numel ())
    { }

    operator Range () const
    {
      return Range (m_base, m_limit, m_inc);
    }

    bool all_elements_are_ints (void) const;

    double m_base;
    double m_limit;
    double m_inc;
    octave_idx_type m_nelem;
  };

  std::ostream& operator << (std::ostream& os, const jit_range& rng);

  // jit_array is compatible with the llvm array/matrix structures
  template <typename T, typename U>
  struct
  jit_array
  {
    jit_array (void) : m_array (0) { }

    jit_array (T& from) : m_array (new T (from))
    {
      update ();
    }

    void update (void)
    {
      m_ref_count = m_array->jit_ref_count ();
      m_slice_data = m_array->jit_slice_data () - 1;
      m_slice_len = m_array->numel ();
      m_dimensions = m_array->jit_dimensions ();
    }

    void update (T *aarray)
    {
      m_array = aarray;
      update ();
    }

    operator T () const
    {
      return *m_array;
    }

    int m_ref_count;

    U *m_slice_data;
    octave_idx_type m_slice_len;
    octave_idx_type *m_dimensions;

    T *m_array;
  };

  typedef jit_array<NDArray, double> jit_matrix;

  std::ostream& operator << (std::ostream& os, const jit_matrix& mat);

  // calling convention
  namespace jit_convention
  {
    enum
    type
    {
      // internal to jit
      internal,

      // an external C call
      external,

      length
    };
  }

  // Used to keep track of estimated (infered) types during JIT.  This is a
  // hierarchical type system which includes both concrete and abstract types.
  //
  // The types form a lattice.  Currently we only allow for one parent type, but
  // eventually we may allow for multiple predecessors.
  class
  jit_type
  {
  public:

    typedef llvm::Value *(*convert_fn) (llvm::IRBuilderD&, llvm::Value *);

    jit_type (const std::string& aname, jit_type *aparent, llvm::Type *allvm_type,
              bool askip_paren, int aid);

    // a user readable type name
    const std::string& name (void) const { return m_name; }

    // a unique id for the type
    int type_id (void) const { return m_id; }

    // An abstract base type, may be null
    jit_type * parent (void) const { return m_parent; }

    // convert to an llvm type
    llvm::Type * to_llvm (void) const { return m_llvm_type; }

    // how this type gets passed as a function argument
    llvm::Type * to_llvm_arg (void) const;

    size_t depth (void) const { return m_depth; }

    bool skip_paren (void) const { return m_skip_paren; }

    // -------------------- Calling Convention information --------------------

    // A function declared like: mytype foo (int arg0, int arg1);
    // Will be converted to: void foo (mytype *retval, int arg0, int arg1)
    // if mytype is sret.  The caller is responsible for allocating space for
    // retval. (on the stack)
    bool sret (jit_convention::type cc) const { return m_sret[cc]; }

    void mark_sret (jit_convention::type cc)
    { m_sret[cc] = true; }

    // A function like: void foo (mytype arg0)
    // Will be converted to: void foo (mytype *arg0)
    // Basically just pass by reference.
    bool pointer_arg (jit_convention::type cc) const { return m_pointer_arg[cc]; }

    void mark_pointer_arg (jit_convention::type cc)
    { m_pointer_arg[cc] = true; }

    // Convert into an equivalent form before calling.  For example, complex is
    // represented as two values llvm vector, but we need to pass it as a two
    // valued llvm structure to C functions.
    convert_fn pack (jit_convention::type cc) { return m_pack[cc]; }

    void set_pack (jit_convention::type cc, convert_fn fn) { m_pack[cc] = fn; }

    // The inverse operation of pack.
    convert_fn unpack (jit_convention::type cc) { return m_unpack[cc]; }

    void set_unpack (jit_convention::type cc, convert_fn fn)
    { m_unpack[cc] = fn; }

    // The resulting type after pack is called.
    llvm::Type * packed_type (jit_convention::type cc)
    { return m_packed_type[cc]; }

    void set_packed_type (jit_convention::type cc, llvm::Type *ty)
    { m_packed_type[cc] = ty; }

  private:

    std::string m_name;
    jit_type *m_parent;
    llvm::Type *m_llvm_type;
    int m_id;
    size_t m_depth;
    bool m_skip_paren;

    bool m_sret[jit_convention::length];
    bool m_pointer_arg[jit_convention::length];

    convert_fn m_pack[jit_convention::length];
    convert_fn m_unpack[jit_convention::length];

    llvm::Type *m_packed_type[jit_convention::length];
  };

  // seperate print function to allow easy printing if type is null
  std::ostream& jit_print (std::ostream& os, jit_type *atype);

  // Find common type
  jit_type* jit_type_join (jit_type *lhs, jit_type *rhs);



  class jit_value;

  // An abstraction for calling llvm functions with jit_values.  Deals with
  // calling convention details.
  class
  jit_function
  {
    friend std::ostream& operator << (std::ostream& os, const jit_function& fn);

  public:

    // create a function in an invalid state
    jit_function (void);

    jit_function (const jit_module *amodule, jit_convention::type acall_conv,
                  const llvm::Twine& aname, jit_type *aresult,
                  const std::vector<jit_type *>& aargs);

    // Use an existing function, but change the argument types.  The new argument
    // types must behave the same for the current calling convention.
    jit_function (const jit_function& fn, jit_type *aresult,
                  const std::vector<jit_type *>& aargs);

    jit_function (const jit_function& fn);

    // erase the interal LLVM function (if it exists).  Will become invalid.
    void erase (void);

    bool valid (void) const { return m_llvm_function; }

    std::string name (void) const;

    llvm::BasicBlock * new_block (const std::string& aname = "body",
                                  llvm::BasicBlock *insert_before = nullptr);

    typedef std::vector<llvm::Value *> arg_vec;

    llvm::Value * call (llvm::IRBuilderD& builder,
                        const arg_vec& in_args = arg_vec ()) const;

    llvm::Value * call (llvm::IRBuilderD& builder,
                        const std::vector<jit_value *>& in_args) const;

    template <typename ...Args>
    llvm::Value * call (llvm::IRBuilderD& builder, arg_vec& in_args,
                        llvm::Value * arg1, Args... other_args) const
    {
      in_args.push_back (arg1);
      return call (builder, in_args, other_args...);
    }

    template <typename T, typename ...Args>
    llvm::Value * call (llvm::IRBuilderD& builder, arg_vec& in_args,
                        T * arg1, Args... other_args) const
    {
      in_args.push_back (arg1->to_llvm ());
      return call (builder, in_args, other_args...);
    }

    template <typename ...Args>
    llvm::Value * call (llvm::IRBuilderD& builder, llvm::Value * arg1,
                        Args... other_args) const
    {
      arg_vec in_args;
      in_args.reserve (1 + sizeof... (other_args));
      in_args.push_back (arg1);
      return call (builder, in_args, other_args...);
    }

    template <typename T, typename ...Args>
    llvm::Value * call (llvm::IRBuilderD& builder, T * arg1,
                        Args... other_args) const
    {
      arg_vec in_args;
      in_args.reserve (1 + sizeof... (other_args));
      in_args.push_back (arg1->to_llvm ());
      return call (builder, in_args, other_args...);
    }

    llvm::Value * argument (llvm::IRBuilderD& builder, size_t idx) const;

    void do_return (llvm::IRBuilderD& builder, llvm::Value *rval = nullptr,
                    bool verify = true);

    llvm::Function * to_llvm (void) const { return m_llvm_function; }

    // If true, then the return value is passed as a pointer in the first argument
    bool sret (void) const { return m_result && m_result->sret (m_call_conv); }

    bool can_error (void) const { return m_can_error; }

    void mark_can_error (void) { m_can_error = true; }

    jit_type * result (void) const { return m_result; }

    jit_type * argument_type (size_t idx) const
    {
      assert (idx < m_args.size ());
      return m_args[idx];
    }

    const std::vector<jit_type *>& arguments (void) const { return m_args; }

  private:

    const jit_module *m_module;
    llvm::Function *m_llvm_function;
    jit_type *m_result;
    std::vector<jit_type *> m_args;
    jit_convention::type m_call_conv;
    bool m_can_error;
  };

  std::ostream& operator << (std::ostream& os, const jit_function& fn);

  // Keeps track of information about how to implement operations (+, -, *, ect)
  // and their resulting types.
  class
  jit_operation
  {
  public:

    jit_operation (const std::string& aname)  { m_name = aname; }

    // type signature vector
    typedef std::vector<jit_type *> signature_vec;

    virtual ~jit_operation (void);

    void add_overload (const jit_function& func)
    {
      add_overload (func, func.arguments ());
    }

    void add_overload (const jit_function& func,
                       const signature_vec& args);

    const jit_function& overload (const signature_vec& types) const;

    template <typename ...Args>
    const jit_function& overload (signature_vec& args, jit_type * arg1,
                                  Args... other_args) const
    {
      args.push_back (arg1);
      return overload (args, other_args...);
    }

    template <typename ...Args>
    const jit_function& overload (jit_type * arg1, Args... other_args) const
    {
      signature_vec args;
      args.reserve (1 + sizeof... (other_args));
      args.push_back (arg1);
      return overload (args, other_args...);
    }

    jit_type * result (const signature_vec& types) const
    {
      const jit_function& temp = overload (types);
      return temp.result ();
    }

    template <typename ...Args>
    jit_type * result (signature_vec& args, jit_type * arg1,
                       Args... other_args) const
    {
      args.push_back (arg1);
      return overload (args, other_args...);
    }

    template <typename ...Args>
    jit_type * result (jit_type * arg1, Args... other_args) const
    {
      signature_vec args;
      args.reserve (1 + sizeof... (other_args));
      args.push_back (arg1);
      return overload (args, other_args...);
    }

    const std::string& name (void) const { return m_name; }

    void stash_name (const std::string& aname) { m_name = aname; }

  protected:

    virtual jit_function * generate (const signature_vec& types) const;

  private:

    Array<octave_idx_type> to_idx (const signature_vec& types) const;

    const jit_function& do_generate (const signature_vec& types) const;

    struct signature_cmp
    {
      bool operator () (const signature_vec *lhs, const signature_vec *rhs) const;
    };

    typedef std::map<const signature_vec *, jit_function *, signature_cmp>
    generated_map;

    mutable generated_map m_generated;

    std::vector<Array<jit_function>> m_overloads;

    std::string m_name;
  };


  class
  jit_index_operation : public jit_operation
  {
  public:

    jit_index_operation (const jit_typeinfo& ti, const std::string& name)
      : jit_operation (name), m_typeinfo (ti) { }

  protected:

    virtual jit_function * generate (const signature_vec& types) const;

    virtual jit_function * generate_matrix (const signature_vec& types) const = 0;

    // helper functions
    // [start_idx, end_idx).
    llvm::Value * create_arg_array (llvm::IRBuilderD& builder,
                                    const jit_function& fn, size_t start_idx,
                                    size_t end_idx) const;

    const jit_typeinfo& m_typeinfo;
  };

  class
  jit_paren_subsref : public jit_index_operation
  {
  public:

    // FIXME: Avoid creating object in an invalid state?
    jit_paren_subsref (const jit_typeinfo& ti);
    ~jit_paren_subsref (void);
    void init_paren_scalar (void);

  protected:

    virtual jit_function * generate_matrix (const signature_vec& types) const;

  private:

    jit_function *m_paren_scalar;
  };

  class
  jit_paren_subsasgn : public jit_index_operation
  {
  public:

    // FIXME: Avoid creating object in an invalid state?
    jit_paren_subsasgn (const jit_typeinfo& ti);
    ~jit_paren_subsasgn (void);
    void init_paren_scalar (void);

  protected:

    jit_function * generate_matrix (const signature_vec& types) const;

  private:

    jit_function *m_paren_scalar;
  };


  // A singleton class which handles the construction of jit_types
  class
  jit_typeinfo
  {
    // ----- Constructor/destructor (singleton pattern) -----

  public:

    ~jit_typeinfo (void);

  private:

    static jit_typeinfo& instance (void);
    jit_typeinfo (void);
    static bool s_in_construction;

    // ----- Registering types -----

  public:

    static jit_type *register_new_type (const std::string& name, jit_type *parent,
                                        llvm::Type *llvm_type, bool skip_paren = false)
    {
      return instance ().do_register_new_type (name, parent, llvm_type, skip_paren);
    }

  private:

    // List of all registered types
    std::vector<jit_type*> m_id_to_type;

    // Register a new type
    jit_type *do_register_new_type (const std::string& name, jit_type *parent,
                                    llvm::Type *llvm_type, bool skip_paren = false);

    // ----- Base types -----

  public:

    static jit_type *get_any (void) { return instance ().m_any; }

    static jit_type *get_matrix (void) { return instance ().m_matrix; }

    static jit_type *get_scalar (void) { return instance ().m_scalar; }

    static jit_type *get_scalar_ptr (void) { return instance ().m_scalar_ptr; }

    static jit_type *get_any_ptr (void) { return instance ().m_any_ptr; }

    static jit_type *get_range (void) { return instance ().m_range; }

    static jit_type *get_string (void) { return instance ().m_string; }

    static jit_type *get_bool (void) { return instance ().m_boolean; }

    static jit_type *get_index (void) { return instance ().m_index; }

    static jit_type *get_complex (void) { return instance ().m_complex; }

    static jit_type *intN (size_t nbits) { return instance ().do_get_intN (nbits); }

    // FIXME: do we really need these two ?
    static llvm::Type *get_scalar_llvm (void) { return instance ().m_scalar->to_llvm (); }  // this one is weird

    static llvm::Type *get_index_llvm (void)  { return instance ().m_index->to_llvm (); }  // this one is weird too

  private:

    // Base types as LLVM types

    llvm::Type *m_any_t;
    llvm::Type *m_bool_t;  // FIXME: should be "boolean_t", for consistency
    llvm::Type *m_complex_t;
    llvm::Type *m_index_t;
    llvm::Type *m_scalar_t;
    llvm::Type *m_string_t;

    llvm::StructType *m_range_t;
    llvm::StructType *m_matrix_t;

    // Base types as jit_type objects)

    jit_type *m_any;
    jit_type *m_boolean;
    jit_type *m_complex;
    jit_type *m_index;
    jit_type *m_scalar;
    jit_type *m_string;

    jit_type *m_range;
    jit_type *m_matrix;

    jit_type *m_scalar_ptr;  // a fake type for interfacing with C++
    jit_type *m_any_ptr;     // a fake type for interfacing with C++ (bis)
    jit_type *m_unknown_function;

    // complex_ret is what is passed to C functions
    // in order to get calling convention right
    llvm::StructType *m_complex_ret;

    // Get integer type from number of bits
    jit_type *do_get_intN (size_t nbits) const;

    // map container for integer types: int8, int16, etc.
    // (note that they are also stored in id_to_types)
    std::map<size_t, jit_type *> m_ints;

    // ----- parenthesis subsref/subsasgn -----

    friend jit_paren_subsref;
    friend jit_paren_subsasgn;

  public:

    static const jit_operation& paren_subsref (void)   { return instance ().paren_subsref_fn; }
    static const jit_operation& paren_subsasgn (void)  { return instance ().paren_subsasgn_fn; }

  private:

    jit_paren_subsref paren_subsref_fn;
    jit_paren_subsasgn paren_subsasgn_fn;

    // ----- Miscellaneous (FIXME: needs to be organized) -----

  public:

    // Get the jit_type of an octave_value
    static jit_type *type_of (const octave_value &ov)
    {
      return instance ().do_type_of (ov);
    };

    // Get a unary or binary operation from its integer id
    static const jit_operation& binary_op (int op)
    {
      return instance ().do_binary_op (op);
    }

    static const jit_operation& unary_op (int op)
    {
      return instance ().do_unary_op (op);
    }

    static const jit_operation& grab (void)
    {
      return instance ().m_grab_fn;
    }

    static const jit_function& get_grab (jit_type *type)
    {
      return instance ().m_grab_fn.overload (type);
    }

    static const jit_operation& release (void)
    {
      return instance ().m_release_fn;
    }

    static const jit_function& get_release (jit_type *type)
    {
      return instance ().m_release_fn.overload (type);
    }

    static const jit_operation& destroy (void)
    {
      return instance ().m_destroy_fn;
    }

    static const jit_operation& print_value (void)
    {
      return instance ().m_print_fn;
    }

    static const jit_operation& for_init (void)
    {
      return instance ().m_for_init_fn;
    }

    static const jit_operation& for_check (void)
    {
      return instance ().m_for_check_fn;
    }

    static const jit_operation& for_index (void)
    {
      return instance ().m_for_index_fn;
    }

    static const jit_operation& make_range (void)
    {
      return instance ().m_make_range_fn;
    }

    static const jit_operation& logically_true (void)
    {
      return instance ().m_logically_true_fn;
    }

    static const jit_operation& cast (jit_type *result)
    {
      return instance ().do_cast (result);
    }

    static const jit_function& cast (jit_type *to, jit_type *from)
    {
      return instance ().do_cast (to, from);
    }

    static llvm::Value *insert_error_check (llvm::IRBuilderD& bld)
    {
      return instance ().do_insert_error_check (bld);
    }

    static llvm::Value *insert_interrupt_check (llvm::IRBuilderD& bld)
    {
      return instance ().do_insert_interrupt_check (bld);
    }

    static const jit_operation& end (void)
    {
      return instance ().m_end_fn;
    }

    static const jit_function& end (jit_value *value, jit_value *idx,
                                    jit_value *count)
    {
      return instance ().do_end (value, idx, count);
    }

    static const jit_operation& create_undef (void)
    {
      return instance ().m_create_undef_fn;
    }

    static llvm::Value *create_complex (llvm::Value *real, llvm::Value *imag)
    {
      return instance ().complex_new (real, imag);
    }

    static llvm::Value *pack_complex (llvm::IRBuilderD& bld, llvm::Value *cplx)
    {
      return instance ().do_pack_complex (bld, cplx);
    }

    static llvm::Value *unpack_complex (llvm::IRBuilderD& bld,
                                        llvm::Value *result);

  private:

    jit_type * do_type_of (const octave_value& ov) const;

    const jit_operation& do_binary_op (int op) const
    {
      assert (static_cast<size_t> (op) < m_binary_ops.size ());
      return m_binary_ops[op];
    }

    const jit_operation& do_unary_op (int op) const
    {
      assert (static_cast<size_t> (op) < m_unary_ops.size ());
      return m_unary_ops[op];
    }

    const jit_operation& do_cast (jit_type *to)
    {
      static jit_operation null_function ("null_function");
      if (! to)
        return null_function;

      size_t id = to->type_id ();
      if (id >= m_casts.size ())
        return null_function;
      return m_casts[id];
    }

    const jit_function& do_cast (jit_type *to, jit_type *from)
    {
      return do_cast (to).overload (from);
    }

    const jit_function& do_end (jit_value *value, jit_value *index,
                                jit_value *count);

    void add_print (jit_type *ty, void *fptr);

    void add_binary_op (jit_type *ty, int op, int llvm_op);

    void add_binary_icmp (jit_type *ty, int op, int llvm_op);

    void add_binary_fcmp (jit_type *ty, int op, int llvm_op);

    // type signature vector
    typedef std::vector<jit_type *> signature_vec;

    // create a function with an external calling convention
    // forces the function pointer to be specified
    template <typename T>
    jit_function create_external (T fn, const llvm::Twine& name,
                                  jit_type * ret, const signature_vec& args
                                  = signature_vec ()) const;

    template <typename T, typename ...Args>
    jit_function create_external (T fn, const llvm::Twine& name,
                                  jit_type * ret, signature_vec& args,
                                  jit_type * arg1, Args... other_args) const
    {
      args.push_back (arg1);
      return create_external (fn, name, ret, args, other_args...);
    }

    template <typename T, typename ...Args>
    jit_function create_external (T fn, const llvm::Twine& name, jit_type *ret,
                                  jit_type * arg1, Args... other_args) const
    {
      signature_vec args;
      args.reserve (1 + sizeof... (other_args));
      args.push_back (arg1);
      return create_external (fn, name, ret, args, other_args...);
    }

    // create an internal calling convention (a function defined in llvm)
    jit_function create_internal (const llvm::Twine& name, jit_type *ret,
                                  const signature_vec& args
                                  = signature_vec ()) const
    {
      return jit_function (m_base_jit_module, jit_convention::internal,
                           name, ret, args);
    }

    template <typename ...Args>
    jit_function create_internal (const llvm::Twine& name, jit_type *ret,
                                  signature_vec& args,
                                  jit_type * arg1, Args... other_args) const
    {
      args.push_back (arg1);
      return create_internal (name, ret, args, other_args...);
    }

    template <typename ...Args>
    jit_function create_internal (const llvm::Twine& name, jit_type *ret,
                                  jit_type * arg1, Args... other_args) const
    {
      signature_vec args;
      args.reserve (1 + sizeof... (other_args));
      args.push_back (arg1);
      return create_internal (name, ret, args, other_args...);
    }

    jit_function create_identity (jit_type *type);

    llvm::Value * do_insert_error_check (llvm::IRBuilderD& bld);

    llvm::Value * do_insert_interrupt_check (llvm::IRBuilderD& bld);

    void add_builtin (const std::string& name);

    void register_intrinsic (const std::string& name, size_t id,
                             jit_type *result, jit_type *arg0)
    {
      std::vector<jit_type *> args (1, arg0);
      register_intrinsic (name, id, result, args);
    }

    void register_intrinsic (const std::string& name, size_t id, jit_type *result,
                             const std::vector<jit_type *>& args);

    void register_generic (const std::string& name, jit_type *result,
                           jit_type *arg0)
    {
      std::vector<jit_type *> args (1, arg0);
      register_generic (name, result, args);
    }

    void register_generic (const std::string& name, jit_type *result,
                           const std::vector<jit_type *>& args);

    octave_builtin * find_builtin (const std::string& name);

    jit_function mirror_binary (const jit_function& fn);

    llvm::Function * wrap_complex (llvm::Function *wrap);

    llvm::Value * complex_real (llvm::Value *cx);

    llvm::Value * complex_real (llvm::Value *cx, llvm::Value *real);

    llvm::Value * complex_imag (llvm::Value *cx);

    llvm::Value * complex_imag (llvm::Value *cx, llvm::Value *imag);

    llvm::Value * complex_new (llvm::Value *real, llvm::Value *imag);

    llvm::Value *do_pack_complex (llvm::IRBuilderD& bld, llvm::Value *cplx) const;

    int m_next_id;

    llvm::GlobalVariable *m_lerror_state;
    llvm::GlobalVariable *m_loctave_interrupt_state;

    llvm::Type *m_sig_atomic_type;

    std::map<std::string, jit_type *> m_builtins;

    std::vector<jit_operation> m_binary_ops;
    std::vector<jit_operation> m_unary_ops;
    jit_operation m_grab_fn;
    jit_operation m_release_fn;
    jit_operation m_destroy_fn;
    jit_operation m_print_fn;
    jit_operation m_for_init_fn;
    jit_operation m_for_check_fn;
    jit_operation m_for_index_fn;
    jit_operation m_logically_true_fn;
    jit_operation m_make_range_fn;
    jit_operation m_end1_fn;
    jit_operation m_end_fn;
    jit_operation m_create_undef_fn;

    jit_function m_any_call;

    // type id -> cast function TO that type
    std::vector<jit_operation> m_casts;

    // type id -> identity function
    std::vector<jit_function> m_identities;

    jit_module *m_base_jit_module;

    llvm::IRBuilderD *m_builder_ptr;
    llvm::IRBuilderD& m_builder;
  };
}

#endif
#endif