view liboctave/array/fCRowVector.cc @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 3e8faed1b7d8
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 1994-2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <istream>
#include <ostream>
#include <type_traits>

#include "Array-util.h"
#include "lo-blas-proto.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// FloatComplex Row Vector class

bool
FloatComplexRowVector::operator == (const FloatComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  if (len != a.numel ())
    return 0;
  return mx_inline_equal (len, data (), a.data ());
}

bool
FloatComplexRowVector::operator != (const FloatComplexRowVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

FloatComplexRowVector&
FloatComplexRowVector::insert (const FloatRowVector& a, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::insert (const FloatComplexRowVector& a,
                               octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (float val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (const FloatComplex& val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (float val, octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (const FloatComplex& val,
                             octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector
FloatComplexRowVector::append (const FloatRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  FloatComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

FloatComplexRowVector
FloatComplexRowVector::append (const FloatComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  FloatComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

FloatComplexColumnVector
FloatComplexRowVector::hermitian (void) const
{
  return MArray<FloatComplex>::hermitian (std::conj);
}

FloatComplexColumnVector
FloatComplexRowVector::transpose (void) const
{
  return MArray<FloatComplex>::transpose ();
}

FloatComplexRowVector
conj (const FloatComplexRowVector& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float>> (a);
}

// resize is the destructive equivalent for this one

FloatComplexRowVector
FloatComplexRowVector::extract (octave_idx_type c1, octave_idx_type c2) const
{
  if (c1 > c2) { std::swap (c1, c2); }

  octave_idx_type new_c = c2 - c1 + 1;

  FloatComplexRowVector result (new_c);

  for (octave_idx_type i = 0; i < new_c; i++)
    result.elem (i) = elem (c1+i);

  return result;
}

FloatComplexRowVector
FloatComplexRowVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  FloatComplexRowVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// row vector by row vector -> row vector operations

FloatComplexRowVector&
FloatComplexRowVector::operator += (const FloatRowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator +=", len, a_len);

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_add2 (len, d, a.data ());
  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::operator -= (const FloatRowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator -=", len, a_len);

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_sub2 (len, d, a.data ());
  return *this;
}

// row vector by matrix -> row vector

FloatComplexRowVector
operator * (const FloatComplexRowVector& v, const FloatComplexMatrix& a)
{
  FloatComplexRowVector retval;

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_nr = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (a_nr != len)
    octave::err_nonconformant ("operator *", 1, len, a_nr, a_nc);

  if (len == 0)
    retval.resize (a_nc, 0.0);
  else
    {
      // Transpose A to form A'*x == (x'*A)'

      F77_INT ld = a_nr;

      retval.resize (a_nc);
      FloatComplex *y = retval.fortran_vec ();

      F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("T", 1),
                               a_nr, a_nc, 1.0, F77_CONST_CMPLX_ARG (a.data ()),
                               ld, F77_CONST_CMPLX_ARG (v.data ()), 1, 0.0, F77_CMPLX_ARG (y), 1
                               F77_CHAR_ARG_LEN (1)));
    }

  return retval;
}

FloatComplexRowVector
operator * (const FloatRowVector& v, const FloatComplexMatrix& a)
{
  FloatComplexRowVector tmp (v);
  return tmp * a;
}

// other operations

FloatComplex
FloatComplexRowVector::min (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return FloatComplex (0.0);

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

FloatComplex
FloatComplexRowVector::max (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return FloatComplex (0.0);

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexRowVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.numel (); i++)
    os << ' ' /* setw (field_width) */ << a.elem (i);
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexRowVector& a)
{
  octave_idx_type len = a.numel ();

  if (len > 0)
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}

// row vector by column vector -> scalar

// row vector by column vector -> scalar

FloatComplex
operator * (const FloatComplexRowVector& v, const FloatColumnVector& a)
{
  FloatComplexColumnVector tmp (a);
  return v * tmp;
}

FloatComplex
operator * (const FloatComplexRowVector& v, const FloatComplexColumnVector& a)
{
  FloatComplex retval (0.0, 0.0);

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (len != a_len)
    octave::err_nonconformant ("operator *", len, a_len);

  if (len != 0)
    F77_FUNC (xcdotu, XCDOTU) (len, F77_CONST_CMPLX_ARG (v.data ()), 1,
                               F77_CONST_CMPLX_ARG (a.data ()), 1, F77_CMPLX_ARG (&retval));

  return retval;
}

// other operations

FloatComplexRowVector
linspace (const FloatComplex& x1, const FloatComplex& x2, octave_idx_type n_in)
{
  FloatComplexRowVector retval;

  if (n_in < 1)
    return retval;
  else if (n_in == 1)
    {
      retval.resize (1, x2);
      return retval;
    }

  // Use unsigned type (guaranteed n_in > 1 at this point) so that divisions
  // by 2 can be replaced by compiler with shift right instructions.
  typedef std::make_unsigned<octave_idx_type>::type unsigned_octave_idx_type;

  unsigned_octave_idx_type n = n_in;

  // Set endpoints, rather than calculate, for maximum accuracy.
  retval.clear (n);
  retval.xelem (0) = x1;
  retval.xelem (n-1) = x2;

  // Construct linspace symmetrically from both ends.
  FloatComplex delta = (x2 - x1) / (n - 1.0f);
  unsigned_octave_idx_type n2 = n/2;
  for (unsigned_octave_idx_type i = 1; i < n2; i++)
    {
      retval.xelem (i) = x1 + static_cast<float> (i)*delta;
      retval.xelem (n-1-i) = x2 - static_cast<float> (i)*delta;
    }
  if (n % 2 == 1)  // Middle element if number of elements is odd.
    retval.xelem (n2) = (x1 == -x2 ? 0 : (x1 + x2) / 2.0f);

  return retval;
}