view liboctave/numeric/lo-mappers.cc @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 00f796120a6d
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 1996-2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-mappers.h"
#include "lo-specfun.h"
#include "math-wrappers.h"

// FIXME: We used to have this situation:
//
//   Functions that forward to gnulib belong here so we can keep
//   gnulib:: out of lo-mappers.h.
//
// but now we just use std:: and explicit wrappers in C++ code so maybe
// some of the forwarding functions can be defined inline here.

namespace octave
{
  namespace math
  {
    bool
    isna (double x)
    {
      return lo_ieee_is_NA (x);
    }

    bool
    isna (const Complex& x)
    {
      return (isna (std::real (x)) || isna (std::imag (x)));
    }

    bool
    isna (float x)
    {
      return lo_ieee_is_NA (x);
    }

    bool
    isna (const FloatComplex& x)
    {
      return (isna (std::real (x)) || isna (std::imag (x)));
    }

    bool
    is_NaN_or_NA (const Complex& x)
    {
      return (isnan (std::real (x)) || isnan (std::imag (x)));
    }

    bool
    is_NaN_or_NA (const FloatComplex& x)
    {
      return (isnan (std::real (x)) || isnan (std::imag (x)));
    }

    // Matlab returns a different phase for acos, asin then std library
    // which requires a small function to remap the phase.
    Complex
    acos (const Complex& x)
    {
      Complex y = std::acos (x);

      if (std::imag (x) == 0.0 && std::real (x) > 1.0)
        return std::conj (y);
      else
        return y;
    }

    FloatComplex
    acos (const FloatComplex& x)
    {
      FloatComplex y = std::acos (x);

      if (std::imag (x) == 0.0f && std::real (x) > 1.0f)
        return std::conj (y);
      else
        return y;
    }

    Complex
    asin (const Complex& x)
    {
      Complex y = std::asin (x);

      if (std::imag (x) == 0.0 && std::real (x) > 1.0)
        return std::conj (y);
      else
        return y;
    }

    FloatComplex
    asin (const FloatComplex& x)
    {
      FloatComplex y = std::asin (x);

      if (std::imag (x) == 0.0f && std::real (x) > 1.0f)
        return std::conj (y);
      else
        return y;
    }

    double frexp (double x, int *expptr)
    {
      return octave_frexp_wrapper (x, expptr);
    }

    float frexp (float x, int *expptr)
    {
      return octave_frexpf_wrapper (x, expptr);
    }

    Complex
    log2 (const Complex& x)
    {
      return std::log (x) / M_LN2;
    }

    FloatComplex
    log2 (const FloatComplex& x)
    {
      return std::log (x) / static_cast<float> (M_LN2);
    }

    double
    log2 (double x, int& exp)
    {
      return frexp (x, &exp);
    }

    float
    log2 (float x, int& exp)
    {
      return frexp (x, &exp);
    }

    Complex
    log2 (const Complex& x, int& exp)
    {
      double ax = std::abs (x);
      double lax = log2 (ax, exp);
      return (ax != lax) ? (x / ax) * lax : x;
    }

    FloatComplex
    log2 (const FloatComplex& x, int& exp)
    {
      float ax = std::abs (x);
      float lax = log2 (ax, exp);
      return (ax != lax) ? (x / ax) * lax : x;
    }

    bool negative_sign (double x) { return __lo_ieee_signbit (x); }
    bool negative_sign (float x) { return __lo_ieee_float_signbit (x); }

    // Sometimes you need a large integer, but not always.

    octave_idx_type
    nint_big (double x)
    {
      if (x > std::numeric_limits<octave_idx_type>::max ())
        return std::numeric_limits<octave_idx_type>::max ();
      else if (x < std::numeric_limits<octave_idx_type>::min ())
        return std::numeric_limits<octave_idx_type>::min ();
      else
        return static_cast<octave_idx_type> ((x > 0.0) ? (x + 0.5)
                                                       : (x - 0.5));
    }

    octave_idx_type
    nint_big (float x)
    {
      if (x > std::numeric_limits<octave_idx_type>::max ())
        return std::numeric_limits<octave_idx_type>::max ();
      else if (x < std::numeric_limits<octave_idx_type>::min ())
        return std::numeric_limits<octave_idx_type>::min ();
      else
        return static_cast<octave_idx_type> ((x > 0.0f) ? (x + 0.5f)
                                                        : (x - 0.5f));
    }

    int
    nint (double x)
    {
      if (x > std::numeric_limits<int>::max ())
        return std::numeric_limits<int>::max ();
      else if (x < std::numeric_limits<int>::min ())
        return std::numeric_limits<int>::min ();
      else
        return static_cast<int> ((x > 0.0) ? (x + 0.5) : (x - 0.5));
    }

    int
    nint (float x)
    {
      if (x > std::numeric_limits<int>::max ())
        return std::numeric_limits<int>::max ();
      else if (x < std::numeric_limits<int>::min ())
        return std::numeric_limits<int>::min ();
      else
        return static_cast<int> ((x > 0.0f) ? (x + 0.5f) : (x - 0.5f));
    }

    Complex
    rc_acos (double x)
    {
      return fabs (x) > 1.0 ? acos (Complex (x)) : Complex (std::acos (x));
    }

    FloatComplex
    rc_acos (float x)
    {
      return fabsf (x) > 1.0f ? acos (FloatComplex (x))
                              : FloatComplex (std::acos (x));
    }

    Complex
    rc_acosh (double x)
    {
      return x < 1.0 ? acosh (Complex (x)) : Complex (acosh (x));
    }

    FloatComplex
    rc_acosh (float x)
    {
      return x < 1.0f ? acosh (FloatComplex (x)) : FloatComplex (acosh (x));
    }

    Complex
    rc_asin (double x)
    {
      return fabs (x) > 1.0 ? asin (Complex (x)) : Complex (std::asin (x));
    }

    FloatComplex
    rc_asin (float x)
    {
      return fabsf (x) > 1.0f ? asin (FloatComplex (x))
                              : FloatComplex (::asinf (x));
    }

    Complex
    rc_atanh (double x)
    {
      return fabs (x) > 1.0 ? atanh (Complex (x)) : Complex (atanh (x));
    }

    FloatComplex
    rc_atanh (float x)
    {
      return fabsf (x) > 1.0f ? atanh (FloatComplex (x))
                              : FloatComplex (atanh (x));
    }

    Complex
    rc_log (double x)
    {
      return x < 0.0 ? Complex (std::log (-x), M_PI) : Complex (std::log (x));
    }

    FloatComplex
    rc_log (float x)
    {
      return x < 0.0f ? FloatComplex (std::log (-x), static_cast<float> (M_PI))
                      : FloatComplex (std::log (x));
    }

    Complex
    rc_log2 (double x)
    {
      constexpr double PI_LN2 = 4.53236014182719380962;  // = pi / log(2)
      return x < 0.0 ? Complex (log2 (-x), PI_LN2) : Complex (log2 (x));
    }

    FloatComplex
    rc_log2 (float x)
    {
      constexpr float PI_LN2 = 4.53236014182719380962f;  // = pi / log(2)
      return x < 0.0f ? FloatComplex (log2 (-x), PI_LN2)
                      : FloatComplex (log2 (x));
    }

    Complex
    rc_log10 (double x)
    {
      constexpr double PI_LN10 = 1.36437635384184134748;  // = pi / log(10)
      return x < 0.0 ? Complex (log10 (-x), PI_LN10) : Complex (log10 (x));
    }

    FloatComplex
    rc_log10 (float x)
    {
      constexpr float PI_LN10 = 1.36437635384184134748f;  // = pi / log(10)
      return x < 0.0f ? FloatComplex (log10 (-x), PI_LN10)
                      : FloatComplex (log10f (x));
    }

    Complex
    rc_sqrt (double x)
    {
      return x < 0.0 ? Complex (0.0, std::sqrt (-x)) : Complex (std::sqrt (x));
    }

    FloatComplex
    rc_sqrt (float x)
    {
      return x < 0.0f ? FloatComplex (0.0f, std::sqrt (-x))
                      : FloatComplex (std::sqrt (x));
    }
  }
}