view liboctave/numeric/lu.cc @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 00f796120a6d
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 1996-2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <algorithm>

#include "CColVector.h"
#include "CMatrix.h"
#include "PermMatrix.h"
#include "dColVector.h"
#include "dMatrix.h"
#include "fCColVector.h"
#include "fCMatrix.h"
#include "fColVector.h"
#include "fMatrix.h"
#include "lo-error.h"
#include "lo-lapack-proto.h"
#include "lo-qrupdate-proto.h"
#include "lu.h"
#include "oct-locbuf.h"

namespace octave
{
  namespace math
  {
    // FIXME: PermMatrix::col_perm_vec returns Array<octave_idx_type>
    // but ipvt is an Array<octave_f77_int_type>.  This could cause
    // trouble for large arrays if octave_f77_int_type is 32-bits but
    // octave_idx_type is 64.  Since this constructor is called from
    // Fluupdate, it could be given values that are out of range.  We
    // should ensure that the values are within range here.

    template <typename T>
    lu<T>::lu (const T& l, const T& u, const PermMatrix& p)
      : a_fact (u), l_fact (l), ipvt (p.transpose ().col_perm_vec ())
    {
      if (l.columns () != u.rows ())
        (*current_liboctave_error_handler) ("lu: dimension mismatch");
    }

    template <typename T>
    bool
    lu<T>::packed (void) const
    {
      return l_fact.dims () == dim_vector ();
    }

    template <typename T>
    void
    lu<T>::unpack (void)
    {
      if (packed ())
        {
          l_fact = L ();
          a_fact = U (); // FIXME: sub-optimal

          // FIXME: getp returns Array<octave_idx_type> but ipvt is
          // Array<octave_f77_int_type>.  However, getp produces its
          // result from a valid ipvt array so validation should not be
          // necessary.  OTOH, it might be better to have a version of
          // getp that doesn't cause us to convert from
          // Array<octave_f77_int_type> to Array<octave_idx_type> and
          // back again.

          ipvt = getp ();
        }
    }

    template <typename T>
    T
    lu<T>::L (void) const
    {
      if (packed ())
        {
          octave_idx_type a_nr = a_fact.rows ();
          octave_idx_type a_nc = a_fact.columns ();
          octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

          T l (a_nr, mn, ELT_T (0.0));

          for (octave_idx_type i = 0; i < a_nr; i++)
            {
              if (i < a_nc)
                l.xelem (i, i) = 1.0;

              for (octave_idx_type j = 0; j < (i < a_nc ? i : a_nc); j++)
                l.xelem (i, j) = a_fact.xelem (i, j);
            }

          return l;
        }
      else
        return l_fact;
    }

    template <typename T>
    T
    lu<T>::U (void) const
    {
      if (packed ())
        {
          octave_idx_type a_nr = a_fact.rows ();
          octave_idx_type a_nc = a_fact.columns ();
          octave_idx_type mn = (a_nr < a_nc ? a_nr : a_nc);

          T u (mn, a_nc, ELT_T (0.0));

          for (octave_idx_type i = 0; i < mn; i++)
            {
              for (octave_idx_type j = i; j < a_nc; j++)
                u.xelem (i, j) = a_fact.xelem (i, j);
            }

          return u;
        }
      else
        return a_fact;
    }

    template <typename T>
    T
    lu<T>::Y (void) const
    {
      if (! packed ())
        (*current_liboctave_error_handler)
          ("lu: Y () not implemented for unpacked form");

      return a_fact;
    }

    template <typename T>
    Array<octave_idx_type>
    lu<T>::getp (void) const
    {
      if (packed ())
        {
          octave_idx_type a_nr = a_fact.rows ();

          Array<octave_idx_type> pvt (dim_vector (a_nr, 1));

          for (octave_idx_type i = 0; i < a_nr; i++)
            pvt.xelem (i) = i;

          for (octave_idx_type i = 0; i < ipvt.numel (); i++)
            {
              octave_idx_type k = ipvt.xelem (i);

              if (k != i)
                {
                  octave_idx_type tmp = pvt.xelem (k);
                  pvt.xelem (k) = pvt.xelem (i);
                  pvt.xelem (i) = tmp;
                }
            }

          return pvt;
        }
      else
        return ipvt;
    }

    template <typename T>
    PermMatrix
    lu<T>::P (void) const
    {
      return PermMatrix (getp (), false);
    }

    template <typename T>
    ColumnVector
    lu<T>::P_vec (void) const
    {
      octave_idx_type a_nr = a_fact.rows ();

      ColumnVector p (a_nr);

      Array<octave_idx_type> pvt = getp ();

      for (octave_idx_type i = 0; i < a_nr; i++)
        p.xelem (i) = static_cast<double> (pvt.xelem (i) + 1);

      return p;
    }

    template <typename T>
    bool
    lu<T>::regular (void) const
    {
      bool retval = true;

      octave_idx_type k = std::min (a_fact.rows (), a_fact.columns ());

      for (octave_idx_type i = 0; i < k; i++)
        {
          if (a_fact(i, i) == ELT_T ())
            {
              retval = false;
              break;
            }
        }

      return retval;
    }

#if ! defined (HAVE_QRUPDATE_LUU)

    template <typename T>
    void
    lu<T>::update (const VT&, const VT&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

    template <typename T>
    void
    lu<T>::update (const T&, const T&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

    template <typename T>
    void
    lu<T>::update_piv (const VT&, const VT&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

    template <typename T>
    void
    lu<T>::update_piv (const T&, const T&)
    {
      (*current_liboctave_error_handler)
        ("luupdate: support for qrupdate with LU updates "
         "was unavailable or disabled when liboctave was built");
    }

#endif

    // Specializations.

    template <>
    lu<Matrix>::lu (const Matrix& a)
    {
      F77_INT a_nr = to_f77_int (a.rows ());
      F77_INT a_nc = to_f77_int (a.columns ());
      F77_INT mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      F77_INT *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      double *tmp_data = a_fact.fortran_vec ();

      F77_INT info = 0;

      F77_XFCN (dgetrf, DGETRF, (a_nr, a_nc, tmp_data, a_nr, pipvt, info));

      for (F77_INT i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<Matrix>::update (const ColumnVector& u, const ColumnVector& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ColumnVector utmp = u;
      ColumnVector vtmp = v;
      F77_XFCN (dlu1up, DLU1UP, (m, n, l.fortran_vec (), m, r.fortran_vec (),
                                 k, utmp.fortran_vec (), vtmp.fortran_vec ()));
    }

    template <>
    void
    lu<Matrix>::update (const Matrix& u, const Matrix& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          ColumnVector utmp = u.column (i);
          ColumnVector vtmp = v.column (i);
          F77_XFCN (dlu1up, DLU1UP, (m, n, l.fortran_vec (),
                                     m, r.fortran_vec (), k,
                                     utmp.fortran_vec (), vtmp.fortran_vec ()));
        }
    }

    template <>
    void
    lu<Matrix>::update_piv (const ColumnVector& u, const ColumnVector& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ColumnVector utmp = u;
      ColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (double, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (dlup1up, DLUP1UP, (m, n, l.fortran_vec (),
                                   m, r.fortran_vec (), k,
                                   ipvt.fortran_vec (),
                                   utmp.data (), vtmp.data (), w));
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<Matrix>::update_piv (const Matrix& u, const Matrix& v)
    {
      if (packed ())
        unpack ();

      Matrix& l = l_fact;
      Matrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (double, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          ColumnVector utmp = u.column (i);
          ColumnVector vtmp = v.column (i);
          F77_XFCN (dlup1up, DLUP1UP, (m, n, l.fortran_vec (),
                                       m, r.fortran_vec (), k,
                                       ipvt.fortran_vec (),
                                       utmp.data (), vtmp.data (), w));
        }
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    template <>
    lu<FloatMatrix>::lu (const FloatMatrix& a)
    {
      F77_INT a_nr = to_f77_int (a.rows ());
      F77_INT a_nc = to_f77_int (a.columns ());
      F77_INT mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      F77_INT *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      float *tmp_data = a_fact.fortran_vec ();

      F77_INT info = 0;

      F77_XFCN (sgetrf, SGETRF, (a_nr, a_nc, tmp_data, a_nr, pipvt, info));

      for (F77_INT i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<FloatMatrix>::update (const FloatColumnVector& u,
                             const FloatColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatColumnVector utmp = u;
      FloatColumnVector vtmp = v;
      F77_XFCN (slu1up, SLU1UP, (m, n, l.fortran_vec (),
                                 m, r.fortran_vec (), k,
                                 utmp.fortran_vec (), vtmp.fortran_vec ()));
    }

    template <>
    void
    lu<FloatMatrix>::update (const FloatMatrix& u, const FloatMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          FloatColumnVector utmp = u.column (i);
          FloatColumnVector vtmp = v.column (i);
          F77_XFCN (slu1up, SLU1UP, (m, n, l.fortran_vec (),
                                     m, r.fortran_vec (), k,
                                     utmp.fortran_vec (), vtmp.fortran_vec ()));
        }
    }

    template <>
    void
    lu<FloatMatrix>::update_piv (const FloatColumnVector& u,
                                 const FloatColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatColumnVector utmp = u;
      FloatColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (float, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (slup1up, SLUP1UP, (m, n, l.fortran_vec (),
                                   m, r.fortran_vec (), k,
                                   ipvt.fortran_vec (),
                                   utmp.data (), vtmp.data (), w));
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<FloatMatrix>::update_piv (const FloatMatrix& u, const FloatMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatMatrix& l = l_fact;
      FloatMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (float, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          FloatColumnVector utmp = u.column (i);
          FloatColumnVector vtmp = v.column (i);
          F77_XFCN (slup1up, SLUP1UP, (m, n, l.fortran_vec (),
                                       m, r.fortran_vec (), k,
                                       ipvt.fortran_vec (),
                                       utmp.data (), vtmp.data (), w));
        }
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    template <>
    lu<ComplexMatrix>::lu (const ComplexMatrix& a)
    {
      F77_INT a_nr = to_f77_int (a.rows ());
      F77_INT a_nc = to_f77_int (a.columns ());
      F77_INT mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      F77_INT *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      Complex *tmp_data = a_fact.fortran_vec ();

      F77_INT info = 0;

      F77_XFCN (zgetrf, ZGETRF, (a_nr, a_nc, F77_DBLE_CMPLX_ARG (tmp_data),
                                 a_nr, pipvt, info));

      for (F77_INT i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<ComplexMatrix>::update (const ComplexColumnVector& u,
                               const ComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ComplexColumnVector utmp = u;
      ComplexColumnVector vtmp = v;
      F77_XFCN (zlu1up, ZLU1UP, (m, n, F77_DBLE_CMPLX_ARG (l.fortran_vec ()), m,
                                 F77_DBLE_CMPLX_ARG (r.fortran_vec ()), k,
                                 F77_DBLE_CMPLX_ARG (utmp.fortran_vec ()),
                                 F77_DBLE_CMPLX_ARG (vtmp.fortran_vec ())));
    }

    template <>
    void
    lu<ComplexMatrix>::update (const ComplexMatrix& u, const ComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          ComplexColumnVector utmp = u.column (i);
          ComplexColumnVector vtmp = v.column (i);
          F77_XFCN (zlu1up, ZLU1UP, (m, n,
                                     F77_DBLE_CMPLX_ARG (l.fortran_vec ()),
                                     m, F77_DBLE_CMPLX_ARG (r.fortran_vec ()),
                                     k,
                                     F77_DBLE_CMPLX_ARG (utmp.fortran_vec ()),
                                     F77_DBLE_CMPLX_ARG (vtmp.fortran_vec ())));
        }
    }

    template <>
    void
    lu<ComplexMatrix>::update_piv (const ComplexColumnVector& u,
                                   const ComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      ComplexColumnVector utmp = u;
      ComplexColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (Complex, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (zlup1up, ZLUP1UP, (m, n, F77_DBLE_CMPLX_ARG (l.fortran_vec ()),
                                   m, F77_DBLE_CMPLX_ARG (r.fortran_vec ()), k,
                                   ipvt.fortran_vec (),
                                   F77_CONST_DBLE_CMPLX_ARG (utmp.data ()),
                                   F77_CONST_DBLE_CMPLX_ARG (vtmp.data ()),
                                   F77_DBLE_CMPLX_ARG (w)));
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<ComplexMatrix>::update_piv (const ComplexMatrix& u,
                                   const ComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      ComplexMatrix& l = l_fact;
      ComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (Complex, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          ComplexColumnVector utmp = u.column (i);
          ComplexColumnVector vtmp = v.column (i);
          F77_XFCN (zlup1up, ZLUP1UP, (m, n,
                                       F77_DBLE_CMPLX_ARG (l.fortran_vec ()),
                                       m,
                                       F77_DBLE_CMPLX_ARG (r.fortran_vec ()),
                                       k, ipvt.fortran_vec (),
                                       F77_CONST_DBLE_CMPLX_ARG (utmp.data ()),
                                       F77_CONST_DBLE_CMPLX_ARG (vtmp.data ()),
                                       F77_DBLE_CMPLX_ARG (w)));
        }
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    template <>
    lu<FloatComplexMatrix>::lu (const FloatComplexMatrix& a)
    {
      F77_INT a_nr = to_f77_int (a.rows ());
      F77_INT a_nc = to_f77_int (a.columns ());
      F77_INT mn = (a_nr < a_nc ? a_nr : a_nc);

      ipvt.resize (dim_vector (mn, 1));
      F77_INT *pipvt = ipvt.fortran_vec ();

      a_fact = a;
      FloatComplex *tmp_data = a_fact.fortran_vec ();

      F77_INT info = 0;

      F77_XFCN (cgetrf, CGETRF, (a_nr, a_nc, F77_CMPLX_ARG (tmp_data), a_nr,
                                 pipvt, info));

      for (F77_INT i = 0; i < mn; i++)
        pipvt[i] -= 1;
    }

#if defined (HAVE_QRUPDATE_LUU)

    template <>
    void
    lu<FloatComplexMatrix>::update (const FloatComplexColumnVector& u,
                                    const FloatComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatComplexColumnVector utmp = u;
      FloatComplexColumnVector vtmp = v;
      F77_XFCN (clu1up, CLU1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()), m,
                                 F77_CMPLX_ARG (r.fortran_vec ()), k,
                                 F77_CMPLX_ARG (utmp.fortran_vec ()),
                                 F77_CMPLX_ARG (vtmp.fortran_vec ())));
    }

    template <>
    void
    lu<FloatComplexMatrix>::update (const FloatComplexMatrix& u,
                                    const FloatComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          FloatComplexColumnVector utmp = u.column (i);
          FloatComplexColumnVector vtmp = v.column (i);
          F77_XFCN (clu1up, CLU1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()),
                                     m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                     F77_CMPLX_ARG (utmp.fortran_vec ()),
                                     F77_CMPLX_ARG (vtmp.fortran_vec ())));
        }
    }

    template <>
    void
    lu<FloatComplexMatrix>::update_piv (const FloatComplexColumnVector& u,
                                        const FloatComplexColumnVector& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nel = to_f77_int (u.numel ());
      F77_INT v_nel = to_f77_int (v.numel ());

      if (u_nel != m || v_nel != n)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      FloatComplexColumnVector utmp = u;
      FloatComplexColumnVector vtmp = v;
      OCTAVE_LOCAL_BUFFER (FloatComplex, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      F77_XFCN (clup1up, CLUP1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()),
                                   m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                   ipvt.fortran_vec (),
                                   F77_CONST_CMPLX_ARG (utmp.data ()),
                                   F77_CONST_CMPLX_ARG (vtmp.data ()),
                                   F77_CMPLX_ARG (w)));
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

    template <>
    void
    lu<FloatComplexMatrix>::update_piv (const FloatComplexMatrix& u,
                                        const FloatComplexMatrix& v)
    {
      if (packed ())
        unpack ();

      FloatComplexMatrix& l = l_fact;
      FloatComplexMatrix& r = a_fact;

      F77_INT m = to_f77_int (l.rows ());
      F77_INT n = to_f77_int (r.columns ());
      F77_INT k = to_f77_int (l.columns ());

      F77_INT u_nr = to_f77_int (u.rows ());
      F77_INT u_nc = to_f77_int (u.columns ());

      F77_INT v_nr = to_f77_int (v.rows ());
      F77_INT v_nc = to_f77_int (v.columns ());

      if (u_nr != m || v_nr != n || u_nc != v_nc)
        (*current_liboctave_error_handler) ("luupdate: dimensions mismatch");

      OCTAVE_LOCAL_BUFFER (FloatComplex, w, m);
      for (F77_INT i = 0; i < m; i++) ipvt(i) += 1; // increment
      for (volatile F77_INT i = 0; i < u_nc; i++)
        {
          FloatComplexColumnVector utmp = u.column (i);
          FloatComplexColumnVector vtmp = v.column (i);
          F77_XFCN (clup1up, CLUP1UP, (m, n, F77_CMPLX_ARG (l.fortran_vec ()),
                                       m, F77_CMPLX_ARG (r.fortran_vec ()), k,
                                       ipvt.fortran_vec (),
                                       F77_CONST_CMPLX_ARG (utmp.data ()),
                                       F77_CONST_CMPLX_ARG (vtmp.data ()),
                                       F77_CMPLX_ARG (w)));
        }
      for (F77_INT i = 0; i < m; i++) ipvt(i) -= 1; // decrement
    }

#endif

    // Instantiations we need.

    template class lu<Matrix>;

    template class lu<FloatMatrix>;

    template class lu<ComplexMatrix>;

    template class lu<FloatComplexMatrix>;
  }
}