view liboctave/util/oct-binmap.h @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 8498dccc15c7
children 1891570abac8
line wrap: on
line source

/*

Copyright (C) 2010-2019 The Octave Project Developers

See the file COPYRIGHT.md in the top-level directory of this distribution
or <https://octave.org/COPYRIGHT.html/>.


This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

#if ! defined (octave_oct_binmap_h)
#define octave_oct_binmap_h 1

#include "octave-config.h"

#include "Array.h"
#include "Sparse.h"
#include "Array-util.h"

#include "bsxfun.h"

// This source file implements a general binary maping function for arrays.
// The syntax is binmap<type> (a, b, f,[name]).
// type denotes the expected return type of the operation.
// a, b, should be one of the 6 combinations:
//
// Array-Array
// Array-scalar
// scalar-Array
// Sparse-Sparse
// Sparse-scalar
// scalar-Sparse
//
// If both operands are nonscalar, name must be supplied.  It is used
// as the base for error message when operands are nonconforming.
//
// The operation needs not be homogeneous, i.e., a, b and the result
// may be of distinct types.  f can have any of the four signatures:
//
// U f (T, R)
// U f (const T&, R)
// U f (T, const R&)
// U f (const T&, const R&)
//
// Additionally, f can be an arbitrary functor object.
//
// octave_quit() is called at appropriate places, hence the operation
// is breakable.

// The following template wrappers are provided for automatic bsxfun
// calls (see the function signature for do_bsxfun_op).

template <typename R, typename X, typename Y, typename F>
class bsxfun_wrapper
{
private:

  static F s_fcn;

public:

  static void
  set_f (const F& f_in)
  {
    s_fcn = f_in;
  }

  static void
  op_mm (size_t n, R *r, const X *x , const Y *y)
  {
    for (size_t i = 0; i < n; i++)
      r[i] = s_fcn (x[i], y[i]);
  }

  static void
  op_sm (size_t n, R *r, X x, const Y *y)
  {
    for (size_t i = 0; i < n; i++)
      r[i] = s_fcn (x, y[i]);
  }

  static void
  op_ms (size_t n , R *r, const X *x, Y y)
  {
    for (size_t i = 0; i < n; i++)
      r[i] = s_fcn (x[i], y);
  }
};

// Static init
template <typename R, typename X, typename Y, typename F>
F bsxfun_wrapper<R, X, Y, F>::s_fcn;

// scalar-Array
template <typename U, typename T, typename R, typename F>
Array<U>
binmap (const T& x, const Array<R>& ya, F fcn)
{
  octave_idx_type len = ya.numel ();

  const R *y = ya.data ();

  Array<U> result (ya.dims ());
  U *p = result.fortran_vec ();

  octave_idx_type i;
  for (i = 0; i < len - 3; i += 4)
    {
      octave_quit ();

      p[i] = fcn (x, y[i]);
      p[i+1] = fcn (x, y[i+1]);
      p[i+2] = fcn (x, y[i+2]);
      p[i+3] = fcn (x, y[i+3]);
    }

  octave_quit ();

  for (; i < len; i++)
    p[i] = fcn (x, y[i]);

  return result;
}

// Array-scalar
template <typename U, typename T, typename R, typename F>
Array<U>
binmap (const Array<T>& xa, const R& y, F fcn)
{
  octave_idx_type len = xa.numel ();

  const R *x = xa.data ();

  Array<U> result (xa.dims ());
  U *p = result.fortran_vec ();

  octave_idx_type i;
  for (i = 0; i < len - 3; i += 4)
    {
      octave_quit ();

      p[i] = fcn (x[i], y);
      p[i+1] = fcn (x[i+1], y);
      p[i+2] = fcn (x[i+2], y);
      p[i+3] = fcn (x[i+3], y);
    }

  octave_quit ();

  for (; i < len; i++)
    p[i] = fcn (x[i], y);

  return result;
}

// Array-Array (treats singletons as scalars)
template <typename U, typename T, typename R, typename F>
Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, F fcn, const char *name)
{
  dim_vector xad = xa.dims ();
  dim_vector yad = ya.dims ();
  if (xa.numel () == 1)
    return binmap<U, T, R, F> (xa(0), ya, fcn);
  else if (ya.numel () == 1)
    return binmap<U, T, R, F> (xa, ya(0), fcn);
  else if (xad != yad)
    {
      if (! is_valid_bsxfun (name, xad, yad))
        octave::err_nonconformant (name, xad, yad);

      bsxfun_wrapper<U, T, R, F>::set_f(fcn);
      return do_bsxfun_op (xa, ya,
                           bsxfun_wrapper<U, T, R, F>::op_mm,
                           bsxfun_wrapper<U, T, R, F>::op_sm,
                           bsxfun_wrapper<U, T, R, F>::op_ms);
    }

  octave_idx_type len = xa.numel ();

  const T *x = xa.data ();
  const T *y = ya.data ();

  Array<U> result (xa.dims ());
  U *p = result.fortran_vec ();

  octave_idx_type i;
  for (i = 0; i < len - 3; i += 4)
    {
      octave_quit ();

      p[i] = fcn (x[i], y[i]);
      p[i+1] = fcn (x[i+1], y[i+1]);
      p[i+2] = fcn (x[i+2], y[i+2]);
      p[i+3] = fcn (x[i+3], y[i+3]);
    }

  octave_quit ();

  for (; i < len; i++)
    p[i] = fcn (x[i], y[i]);

  return result;
}

// scalar-Sparse
template <typename U, typename T, typename R, typename F>
Sparse<U>
binmap (const T& x, const Sparse<R>& ys, F fcn)
{
  R yzero = R ();
  U fz = fcn (x, yzero);

  if (fz == U ())  // Sparsity preserving fcn
    {
      octave_idx_type nz = ys.nnz ();
      Sparse<U> retval (ys.rows (), ys.cols (), nz);
      std::copy (ys.ridx (), ys.ridx () + nz, retval.ridx ());
      std::copy (ys.cidx (), ys.cidx () + ys.cols () + 1, retval.cidx ());

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          // FIXME: Could keep track of whether fcn call results in a 0.
          //        If no zeroes are created could skip maybe_compress()
          retval.xdata (i) = fcn (x, ys.data (i));
        }

      octave_quit ();
      retval.maybe_compress (true);
      return retval;
    }
  else
    return Sparse<U> (binmap<U, T, R, F> (x, ys.array_value (), fcn));
}

// Sparse-scalar
template <typename U, typename T, typename R, typename F>
Sparse<U>
binmap (const Sparse<T>& xs, const R& y, F fcn)
{
  T xzero = T ();
  U fz = fcn (xzero, y);

  if (fz == U ())  // Sparsity preserving fcn
    {
      octave_idx_type nz = xs.nnz ();
      Sparse<U> retval (xs.rows (), xs.cols (), nz);
      std::copy (xs.ridx (), xs.ridx () + nz, retval.ridx ());
      std::copy (xs.cidx (), xs.cidx () + xs.cols () + 1, retval.cidx ());

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          // FIXME: Could keep track of whether fcn call results in a 0.
          //        If no zeroes are created could skip maybe_compress()
          retval.xdata (i) = fcn (xs.data (i), y);
        }

      octave_quit ();
      retval.maybe_compress (true);
      return retval;
    }
  else
    return Sparse<U> (binmap<U, T, R, F> (xs.array_value (), y, fcn));
}

// Sparse-Sparse (treats singletons as scalars)
template <typename U, typename T, typename R, typename F>
Sparse<U>
binmap (const Sparse<T>& xs, const Sparse<R>& ys, F fcn, const char *name)
{
  if (xs.rows () == 1 && xs.cols () == 1)
    return binmap<U, T, R, F> (xs(0,0), ys, fcn);
  else if (ys.rows () == 1 && ys.cols () == 1)
    return binmap<U, T, R, F> (xs, ys(0,0), fcn);
  else if (xs.dims () != ys.dims ())
    octave::err_nonconformant (name, xs.dims (), ys.dims ());

  T xzero = T ();
  R yzero = R ();
  U fz = fcn (xzero, yzero);

  if (fz == U ())
    {
      // Sparsity-preserving function.  Do it efficiently.
      octave_idx_type nr = xs.rows ();
      octave_idx_type nc = xs.cols ();
      Sparse<T> retval (nr, nc, xs.nnz () + ys.nnz ());

      octave_idx_type nz = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          octave_quit ();

          octave_idx_type jx = xs.cidx (j);
          octave_idx_type jx_max = xs.cidx (j+1);
          bool jx_lt_max = jx < jx_max;

          octave_idx_type jy = ys.cidx (j);
          octave_idx_type jy_max = ys.cidx (j+1);
          bool jy_lt_max = jy < jy_max;

          while (jx_lt_max || jy_lt_max)
            {
              if (! jy_lt_max
                  || (jx_lt_max && (xs.ridx (jx) < ys.ridx (jy))))
                {
                  retval.xridx (nz) = xs.ridx (jx);
                  retval.xdata (nz) = fcn (xs.data (jx), yzero);
                  jx++;
                  jx_lt_max = jx < jx_max;
                }
              else if (! jx_lt_max
                       || (jy_lt_max && (ys.ridx (jy) < xs.ridx (jx))))
                {
                  retval.xridx (nz) = ys.ridx (jy);
                  retval.xdata (nz) = fcn (xzero, ys.data (jy));
                  jy++;
                  jy_lt_max = jy < jy_max;
                }
              else
                {
                  retval.xridx (nz) = xs.ridx (jx);
                  retval.xdata (nz) = fcn (xs.data (jx), ys.data (jy));
                  jx++;
                  jx_lt_max = jx < jx_max;
                  jy++;
                  jy_lt_max = jy < jy_max;
                }
              nz++;
            }
          retval.xcidx (j+1) = nz;
        }

      retval.maybe_compress (true);
      return retval;
    }
  else
    return Sparse<U> (binmap<U, T, R, F> (xs.array_value (), ys.array_value (),
                                          fcn, name));
}

// Overloads for function pointers.

// Signature (T, R)

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (T, R),
        const char *name)
{ return binmap<U, T, R, U (*) (T, R)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (xa, y, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (T, R),
        const char *name)
{ return binmap<U, T, R, U (*) (T, R)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (xa, y, fcn); }

// Signature (const T&, const R&)

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (const T&, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, y, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (const T&, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, y, fcn); }

// Signature (const T&, R)

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (const T&, R),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, y, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (const T&, R),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, y, fcn); }

// Signature (T, const R&)

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (T, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, y, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (T, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, ya, fcn, name); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (x, ya, fcn); }

template <typename U, typename T, typename R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, y, fcn); }

#endif