view scripts/general/interp1.m @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 00f796120a6d
children 1891570abac8
line wrap: on
line source

## Copyright (C) 2000-2019 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this distribution
## or <https://octave.org/COPYRIGHT.html/>.
##
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {@var{yi} =} interp1 (@var{x}, @var{y}, @var{xi})
## @deftypefnx {} {@var{yi} =} interp1 (@var{y}, @var{xi})
## @deftypefnx {} {@var{yi} =} interp1 (@dots{}, @var{method})
## @deftypefnx {} {@var{yi} =} interp1 (@dots{}, @var{extrap})
## @deftypefnx {} {@var{yi} =} interp1 (@dots{}, "left")
## @deftypefnx {} {@var{yi} =} interp1 (@dots{}, "right")
## @deftypefnx {} {@var{pp} =} interp1 (@dots{}, "pp")
##
## One-dimensional interpolation.
##
## Interpolate input data to determine the value of @var{yi} at the points
## @var{xi}.  If not specified, @var{x} is taken to be the indices of @var{y}
## (@code{1:length (@var{y})}).  If @var{y} is a matrix or an N-dimensional
## array, the interpolation is performed on each column of @var{y}.
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"previous"}
## Return the previous neighbor.
##
## @item @qcode{"next"}
## Return the next neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative.
##
## @item @qcode{"cubic"}
## Cubic interpolation (same as @qcode{"pchip"}).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## Adding '*' to the start of any method above forces @code{interp1}
## to assume that @var{x} is uniformly spaced, and only @code{@var{x}(1)}
## and @code{@var{x}(2)} are referenced.  This is usually faster,
## and is never slower.  The default method is @qcode{"linear"}.
##
## If @var{extrap} is the string @qcode{"extrap"}, then extrapolate values
## beyond the endpoints using the current @var{method}.  If @var{extrap} is a
## number, then replace values beyond the endpoints with that number.  When
## unspecified, @var{extrap} defaults to @code{NA}.
##
## If the string argument @qcode{"pp"} is specified, then @var{xi} should not
## be supplied and @code{interp1} returns a piecewise polynomial object.  This
## object can later be used with @code{ppval} to evaluate the interpolation.
## There is an equivalence, such that @code{ppval (interp1 (@var{x},
## @var{y}, @var{method}, @qcode{"pp"}), @var{xi}) == interp1 (@var{x},
## @var{y}, @var{xi}, @var{method}, @qcode{"extrap"})}.
##
## Duplicate points in @var{x} specify a discontinuous interpolant.  There
## may be at most 2 consecutive points with the same value.
## If @var{x} is increasing, the default discontinuous interpolant is
## right-continuous.  If @var{x} is decreasing, the default discontinuous
## interpolant is left-continuous.
## The continuity condition of the interpolant may be specified by using
## the options @qcode{"left"} or @qcode{"right"} to select a left-continuous
## or right-continuous interpolant, respectively.
## Discontinuous interpolation is only allowed for @qcode{"nearest"} and
## @qcode{"linear"} methods; in all other cases, the @var{x}-values must be
## unique.
##
## An example of the use of @code{interp1} is
##
## @example
## @group
## xf = [0:0.05:10];
## yf = sin (2*pi*xf/5);
## xp = [0:10];
## yp = sin (2*pi*xp/5);
## lin = interp1 (xp, yp, xf);
## near = interp1 (xp, yp, xf, "nearest");
## pch = interp1 (xp, yp, xf, "pchip");
## spl = interp1 (xp, yp, xf, "spline");
## plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xf,pch,"c", xf,spl,"m",
##       xp,yp,"r*");
## legend ("original", "nearest", "linear", "pchip", "spline");
## @end group
## @end example
##
## @seealso{pchip, spline, interpft, interp2, interp3, interpn}
## @end deftypefn

## Author: Paul Kienzle
## Date: 2000-03-25
##    added 'nearest' as suggested by Kai Habel
## 2000-07-17 Paul Kienzle
##    added '*' methods and matrix y
##    check for proper table lengths
## 2002-01-23 Paul Kienzle
##    fixed extrapolation

function yi = interp1 (x, y, varargin)

  if (nargin < 2 || nargin > 6)
    print_usage ();
  endif

  method = "linear";
  extrap = NA;
  xi = [];
  ispp = false;
  firstnumeric = true;
  rightcontinuous = NaN;

  if (nargin > 2)
    for i = 1:length (varargin)
      arg = varargin{i};
      if (ischar (arg))
        arg = tolower (arg);
        switch (arg)
          case "extrap"
            extrap = "extrap";
          case "pp"
            ispp = true;
          case {"right", "-right"}
            rightcontinuous = true;
          case {"left", "-left"}
            rightcontinuous = false;
          otherwise
            method = arg;
        endswitch
      else
        if (firstnumeric)
          xi = arg;
          firstnumeric = false;
        else
          extrap = arg;
        endif
      endif
    endfor
  endif

  if (isempty (xi) && firstnumeric && ! ispp)
    xi = y;
    y = x;
    if (isvector (y))
      x = 1:numel (y);
    else
      x = 1:rows (y);
    endif
  endif

  ## reshape matrices for convenience
  x = x(:);
  nx = rows (x);
  szx = size (xi);
  if (isvector (y))
    y = y(:);
  endif

  szy = size (y);
  y = y(:,:);
  [ny, nc] = size (y);
  xi = xi(:);

  ## determine sizes
  if (nx < 2 || ny < 2)
    error ("interp1: minimum of 2 points required in each dimension");
  endif

  ## check whether x is sorted; sort if not.
  if (! issorted (x, "either"))
    [x, p] = sort (x);
    y = y(p,:);
  endif

  if (any (strcmp (method, {"previous", "*previous", "next", "*next"})))
    rightcontinuous = NaN; # needed for these methods to work
  endif

  if (isnan (rightcontinuous))
    ## If not specified, set the continuity condition
    if (x(end) < x(1))
      rightcontinuous = false;
    else
      rightcontinuous = true;
    endif
  elseif ((rightcontinuous && (x(end) < x(1)))
          || (! rightcontinuous && (x(end) > x(1))))
    ## Switch between left-continuous and right-continuous
    x = flipud (x);
    y = flipud (y);
  endif

  ## Because of the way mkpp works, it's easiest to implement "next"
  ## by running "previous" with vectors flipped.
  if (strcmp (method, "next"))
    x = flipud (x);
    y = flipud (y);
    method = "previous";
  elseif (strcmp (method, "*next"))
    x = flipud (x);
    y = flipud (y);
    method = "*previous";
  endif

  starmethod = method(1) == "*";

  if (starmethod)
    dx = x(2) - x(1);
  else
    jumps = x(1:end-1) == x(2:end);
    have_jumps = any (jumps);
    if (have_jumps)
      if (strcmp (method, "linear") || strcmp (method, ("nearest")))
        if (any (jumps(1:nx-2) & jumps(2:nx-1)))
          warning ("interp1: multiple discontinuities at the same X value");
        endif
      else
        error ("interp1: discontinuities not supported for METHOD '%s'",
                                                                   method);
      endif
    endif
  endif

  ## Proceed with interpolating by all methods.
  switch (method)

    case "nearest"
      pp = mkpp ([x(1); (x(1:nx-1)+x(2:nx))/2; x(nx)],
                 shiftdim (y, 1), szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "*nearest"
      pp = mkpp ([x(1), x(1)+[0.5:(nx-1)]*dx, x(nx)],
                 shiftdim (y, 1), szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "previous"
      pp = mkpp ([x(1:nx); 2*x(nx)-x(nx-1)],
                 shiftdim (y, 1), szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "*previous"
      pp = mkpp (x(1)+[0:nx]*dx,
                 shiftdim (y, 1), szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "linear"

      xx = x;
      nxx = nx;
      yy = y;
      dy = diff (yy);
      if (have_jumps)
        ## Omit zero-size intervals.
        xx(jumps) = [];
        nxx = rows (xx);
        yy(jumps, :) = [];
        dy(jumps, :) = [];
      endif

      dx = diff (xx);
      dx = repmat (dx, [1 size(dy)(2:end)]);

      coefs = [(dy./dx).', yy(1:nxx-1, :).'];

      pp = mkpp (xx, coefs, szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case "*linear"
      dy = diff (y);
      coefs = [(dy/dx).'(:), y(1:nx-1, :).'(:)];
      pp = mkpp (x, coefs, szy(2:end));
      pp.orient = "first";

      if (ispp)
        yi = pp;
      else
        yi = ppval (pp, reshape (xi, szx));
      endif

    case {"pchip", "*pchip", "cubic", "*cubic"}
      if (nx == 2 || starmethod)
        x = linspace (x(1), x(nx), ny);
      endif

      if (ispp)
        y = shiftdim (reshape (y, szy), 1);
        yi = pchip (x, y);
        yi.orient = "first";
      else
        y = shiftdim (y, 1);
        yi = pchip (x, y, reshape (xi, szx));
        if (! isvector (y))
          yi = shiftdim (yi, 1);
        endif
      endif

    case {"spline", "*spline"}
      if (nx == 2 || starmethod)
        x = linspace (x(1), x(nx), ny);
      endif

      if (ispp)
        y = shiftdim (reshape (y, szy), 1);
        yi = spline (x, y);
        yi.orient = "first";
      else
        y = shiftdim (y, 1);
        yi = spline (x, y, reshape (xi, szx));
        if (! isvector (y))
          yi = shiftdim (yi, 1);
        endif
      endif

    otherwise
      error ("interp1: invalid METHOD '%s'", method);

  endswitch

  if (! ispp && isnumeric (extrap))
    ## determine which values are out of range and set them to extrap,
    ## unless extrap == "extrap".
    minx = min (x(1), x(nx));
    maxx = max (x(1), x(nx));

    xi = reshape (xi, szx);
    outliers = (xi < minx) | ! (xi <= maxx);  # this even catches NaNs
    if (size_equal (outliers, yi))
      yi(outliers) = extrap;
      yi = reshape (yi, szx);
    elseif (! isscalar (yi))
      yi(outliers, :) = extrap;
    else
      warning ("interp1: Unreachable state.  Please submit data that produced this warning to bugs.octave.org");
      yi(outliers.') = extrap;
    endif

  endif

endfunction


%!demo
%! clf;
%! xf = 0:0.05:10;  yf = sin (2*pi*xf/5);
%! xp = 0:10;       yp = sin (2*pi*xp/5);
%! lin = interp1 (xp,yp,xf, 'linear');
%! spl = interp1 (xp,yp,xf, 'spline');
%! pch = interp1 (xp,yp,xf, 'pchip');
%! near= interp1 (xp,yp,xf, 'nearest');
%! plot (xf,yf,'r',xf,near,'g',xf,lin,'b',xf,pch,'c',xf,spl,'m',xp,yp,'r*');
%! legend ('original', 'nearest', 'linear', 'pchip', 'spline');
%! title ('Interpolation of continuous function sin (x) w/various methods');
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!demo
%! clf;
%! xf = 0:0.05:10;  yf = sin (2*pi*xf/5);
%! xp = 0:10;       yp = sin (2*pi*xp/5);
%! lin = interp1 (xp,yp,xf, '*linear');
%! spl = interp1 (xp,yp,xf, '*spline');
%! pch = interp1 (xp,yp,xf, '*pchip');
%! near= interp1 (xp,yp,xf, '*nearest');
%! plot (xf,yf,'r',xf,near,'g',xf,lin,'b',xf,pch,'c',xf,spl,'m',xp,yp,'r*');
%! legend ('*original', '*nearest', '*linear', '*pchip', '*spline');
%! title ('Interpolation of continuous function sin (x) w/various *methods');
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!demo
%! clf;
%! fstep = @(x) x > 1;
%! xf = 0:0.05:2;  yf = fstep (xf);
%! xp = linspace (0,2,10);  yp = fstep (xp);
%! pch = interp1 (xp,yp,xf, 'pchip');
%! spl = interp1 (xp,yp,xf, 'spline');
%! plot (xf,yf,'r',xf,pch,'b',xf,spl,'m',xp,yp,'r*');
%! title ({'Interpolation of step function with discontinuity at x==1', ...
%!         'Note: "pchip" is shape-preserving, "spline" (continuous 1st, 2nd derivatives) is not'});
%! legend ('original', 'pchip', 'spline');

%!demo
%! clf;
%! t = 0 : 0.3 : pi; dt = t(2)-t(1);
%! n = length (t); k = 100; dti = dt*n/k;
%! ti = t(1) + [0 : k-1]*dti;
%! y = sin (4*t + 0.3) .* cos (3*t - 0.1);
%! ddys = diff (diff (interp1 (t,y,ti, 'spline'))./dti)./dti;
%! ddyp = diff (diff (interp1 (t,y,ti, 'pchip')) ./dti)./dti;
%! ddyc = diff (diff (interp1 (t,y,ti, 'cubic')) ./dti)./dti;
%! plot (ti(2:end-1),ddys,'b*', ti(2:end-1),ddyp,'c^', ti(2:end-1),ddyc,'g+');
%! title ({'Second derivative of interpolated "sin (4*t + 0.3) .* cos (3*t - 0.1)"', ...
%!         'Note: "spline" has continous 2nd derivative, others do not'});
%! legend ('spline', 'pchip', 'cubic');

%!demo
%! clf;
%! xf = 0:0.05:10;                yf = sin (2*pi*xf/5) - (xf >= 5);
%! xp = [0:.5:4.5,4.99,5:.5:10];  yp = sin (2*pi*xp/5) - (xp >= 5);
%! lin = interp1 (xp,yp,xf, 'linear');
%! near= interp1 (xp,yp,xf, 'nearest');
%! plot (xf,yf,'r', xf,near,'g', xf,lin,'b', xp,yp,'r*');
%! legend ('original', 'nearest', 'linear');
%! %--------------------------------------------------------
%! % confirm that interpolated function matches the original

%!demo
%! clf;
%! x = 0:0.5:3;
%! x1 = [3 2 2 1];
%! x2 = [1 2 2 3];
%! y1 = [1 1 0 0];
%! y2 = [0 0 1 1];
%! h = plot (x, interp1 (x1, y1, x), 'b', x1, y1, 'sb');
%! hold on
%! g = plot (x, interp1 (x2, y2, x), 'r', x2, y2, '*r');
%! axis ([0.5 3.5 -0.5 1.5]);
%! legend ([h(1), g(1)], {'left-continuous', 'right-continuous'}, ...
%!         'location', 'northwest')
%! legend boxoff
%! %--------------------------------------------------------
%! % red curve is left-continuous and blue is right-continuous at x = 2

##FIXME: add test for N-d arguments here

## For each type of interpolated test, confirm that the interpolated
## value at the knots match the values at the knots.  Points away
## from the knots are requested, but only "nearest" and "linear"
## confirm they are the correct values.

%!shared xp, yp, xi, style
%! xp = 0:2:10;
%! yp = sin (2*pi*xp/5);
%! xi = [-1, 0, 2.2, 4, 6.6, 10, 11];

## The following BLOCK/ENDBLOCK section is repeated for each style
##    nearest, previous, next, linear, cubic, spline, pchip
## The test for ppval of cubic has looser tolerance, but otherwise
## the tests are identical.
## Note that the block checks style and *style; if you add more tests
## be sure to add them to both sections of each block.  One test,
## style vs. *style, occurs only in the first section.
## There is an ENDBLOCKTEST after the final block

%!test style = "nearest";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "previous";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
## This test is expected to fail, so commented out.
## "previous" and "next" options are not symmetric w.r.t to flipping xp,yp
#%!assert (interp1 (xp,yp,xi,style),...
#%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
#%!assert (interp1 (xp,yp,xi,style),...
#%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "next";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
#%!assert (interp1 (xp,yp,xi,style),...
#%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
#%!assert (interp1 (xp,yp,xi,style),...
#%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "linear";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ['*',style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!assert (interp1 ([1 2 2 3], [1 2 3 4], 2), 3)
%!assert (interp1 ([3 2 2 1], [4 3 2 1], 2), 2)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "cubic";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),100*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),100*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "pchip";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK

%!test style = "spline";
## BLOCK
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
%!assert (interp1 (xp,[yp',yp'],xi,style),
%!        interp1 (xp,[yp',yp'],xi,["*",style]),100*eps)
%!test style = ["*",style];
%!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA])
%!assert (interp1 (xp,yp,xp,style), yp, 100*eps)
%!assert (interp1 (xp,yp,xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp',style), yp', 100*eps)
%!assert (interp1 (xp',yp',xp,style), yp, 100*eps)
%!assert (isempty (interp1 (xp',yp',[],style)))
%!assert (isempty (interp1 (xp,yp,[],style)))
%!assert (interp1 (xp,[yp',yp'],xi(:),style),...
%!        [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)])
%!assert (interp1 (xp,yp,xi,style),...
%!        interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps)
%!assert (ppval (interp1 (xp,yp,style,"pp"),xi),
%!        interp1 (xp,yp,xi,style,"extrap"),10*eps)
%!error interp1 (1,1,1, style)
## ENDBLOCK
## ENDBLOCKTEST

## test extrapolation
%!assert (interp1 ([1:5],[3:2:11],[0,6],"linear","extrap"), [1, 13], eps)
%!assert (interp1 ([1:5],[3:2:11],[0,6],"nearest","extrap"), [3, 11], eps)
%!assert (interp1 ([1:5],[3:2:11],[0,6],"previous","extrap"), [3, 11], eps)
%!assert (interp1 ([1:5],[3:2:11],[0,6],"next","extrap"), [3, 11], eps)
%!assert (interp1 (xp, yp, [-1, max(xp)+1],"linear",5), [5, 5])
%!assert (interp1 ([0,1],[1,0],[0.1,0.9;0.2,1.1]), [0.9 0.1; 0.8 NA], eps)
%!assert (interp1 ([0,1],[1,0],[0.1,0.9;0.2,1]), [0.9 0.1; 0.8 0], eps)

## Basic sanity checks
%!assert (interp1 (1:2,1:2,1.4,"nearest"), 1)
%!assert (interp1 (1:2,1:2,1.6,"previous"), 1)
%!assert (interp1 (1:2,1:2,1.4,"next"), 2)
%!assert (interp1 (1:2,1:2,1.4,"linear"), 1.4)
%!assert (interp1 (1:4,1:4,1.4,"cubic"), 1.4)
%!assert (interp1 (1:2,1:2,1.1,"spline"), 1.1)
%!assert (interp1 (1:3,1:3,1.4,"spline"), 1.4)

%!assert (interp1 (1:2:4,1:2:4,1.4,"*nearest"), 1)
%!assert (interp1 (1:2:4,1:2:4,2.2,"*previous"), 1)
%!assert (interp1 (1:2:4,1:2:4,1.4,"*next"), 3)
%!assert (interp1 (1:2:4,1:2:4,[0,1,1.4,3,4],"*linear"), [NA,1,1.4,3,NA])
%!assert (interp1 (1:2:8,1:2:8,1.4,"*cubic"), 1.4)
%!assert (interp1 (1:2,1:2,1.3, "*spline"), 1.3)
%!assert (interp1 (1:2:6,1:2:6,1.4,"*spline"), 1.4)

%!assert (interp1 ([3,2,1],[3,2,2],2.5), 2.5)

%!assert (interp1 ([4,4,3,2,0],[0,1,4,2,1],[1.5,4,4.5], "linear"), [1.75,1,NA])
%!assert (interp1 (0:4, 2.5), 1.5)

## Left and Right discontinuities
%!assert (interp1 ([1,2,2,3,4],[0,1,4,2,1],[-1,1.5,2,2.5,3.5], "linear", "extrap", "right"), [-2,0.5,4,3,1.5])
%!assert (interp1 ([1,2,2,3,4],[0,1,4,2,1],[-1,1.5,2,2.5,3.5], "linear", "extrap", "left"), [-2,0.5,1,3,1.5])

## Test input validation
%!error interp1 ()
%!error interp1 (1,2,3,4,5,6,7)
%!error <minimum of 2 points required> interp1 (1,1,1, "linear")
%!error <minimum of 2 points required> interp1 (1,1,1, "*nearest")
%!error <minimum of 2 points required> interp1 (1,1,1, "*linear")
%!error <minimum of 2 points required> interp1 (1,1,1, "previous")
%!error <minimum of 2 points required> interp1 (1,1,1, "*previous")
%!warning <multiple discontinuities> interp1 ([1 1 1 2], [1 2 3 4], 1);
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "next")
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "pchip")
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "cubic")
%!error <discontinuities not supported> interp1 ([1 1],[1 2],1, "spline")
%!error <invalid METHOD 'invalid'> interp1 (1:2,1:2,1, "invalid")