view scripts/general/num2str.m @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 4d6d21839dfd
children 1891570abac8
line wrap: on
line source

## Copyright (C) 1993-2019 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this distribution
## or <https://octave.org/COPYRIGHT.html/>.
##
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {} num2str (@var{x})
## @deftypefnx {} {} num2str (@var{x}, @var{precision})
## @deftypefnx {} {} num2str (@var{x}, @var{format})
## Convert a number (or array) to a string (or a character array).
##
## The optional second argument may either give the number of significant
## digits (@var{precision}) to be used in the output or a format template
## string (@var{format}) as in @code{sprintf} (@pxref{Formatted Output}).
## @code{num2str} can also process complex numbers.
##
## Examples:
##
## @example
## num2str (123.456)
##   @result{} 123.456
##
## num2str (123.456, 4)
##   @result{} 123.5
##
## s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
##   @result{} s =
##        1.0  1.3
##        3.0  3.6
## whos s
##   @result{} Variables in the current scope:
##         Attr Name        Size                     Bytes  Class
##         ==== ====        ====                     =====  =====
##              s           2x8                         16  char
##      Total is 16 elements using 16 bytes
##
## num2str (1.234 + 27.3i)
##   @result{} 1.234+27.3i
## @end example
##
## The @code{num2str} function is not very flexible.  For better control
## over the results, use @code{sprintf} (@pxref{Formatted Output}).
##
## Programming Notes:
##
## For @sc{matlab} compatibility, leading spaces are stripped before returning
## the string.
##
## Integers larger than @code{flintmax} may not be displayed correctly.
##
## For complex @var{x}, the format string may only contain one output
## conversion specification and nothing else.  Otherwise, results will be
## unpredictable.
##
## Any optional @var{format} specified by the programmer is used without
## modification.  This is in contrast to @sc{matlab} which tampers with the
## @var{format} based on internal heuristics.
## @seealso{sprintf, int2str, mat2str}
## @end deftypefn

function retval = num2str (x, arg)

  if (nargin != 1 && nargin != 2)
    print_usage ();
  elseif (! (isnumeric (x) || islogical (x) || ischar (x)))
    error ("num2str: X must be a numeric, logical, or character array");
  endif

  if (ischar (x))
    retval = x;
  elseif (isempty (x))
    retval = "";
  elseif (isreal (x))
    if (nargin == 2)
      if (ischar (arg))
        fmt = arg;
      elseif (isnumeric (arg) && isscalar (arg) && arg >= 0 && arg == fix (arg))
        fmt = sprintf ("%%%d.%dg", arg+7, arg);
      else
        error ("num2str: PRECISION must be a scalar integer >= 0");
      endif
    else
      if (isnumeric (x))
        ## Set up a suitable format string while ignoring Inf/NaN entries
        valid = isfinite (x(:));
        ndgt = floor (log10 (max (abs (x(valid)))));
        if (isempty (ndgt) || ndgt == -Inf)
          ndgt = 0;  # All Inf or all zero array
        endif

        if (ndgt > 15 || any (x(valid) != fix (x(valid))))
          ## Floating point input
          ndgt = max (ndgt + 5, 5);   # Keep at least 5 significant digits
          ndgt = min (ndgt, 16);      # Cap significant digits at 16
          fmt = sprintf ("%%%d.%dg", ndgt+7, ndgt);
        else
          ## Integer input
          ndgt += 3;
          if (any (! valid))
            ndgt = max (ndgt, 5);     # Allow space for Inf/NaN
          endif
          fmt = sprintf ("%%%d.0f", ndgt);
        endif
      else
        ## Logical input
        fmt = "%3d";
      endif
    endif
    fmt = do_string_escapes (fmt);  # required now that '\n' is interpreted.
    nd = ndims (x);
    nc = columns (x) * (nd - 1);    # ND-arrays are expanded in columns
    x  = permute (x, [2, 3:nd, 1]);
    if (! (sum (fmt == "%") > 1 || any (strcmp (fmt, {"%s", "%c"}))))
      fmt = [deblank(repmat (fmt, 1, nc)), "\n"];
    endif
    strtmp = sprintf (fmt, x);
    retval = strtrim (char (ostrsplit (strtmp, "\n", true)));
  else   # Complex matrix input
    if (nargin == 2)
      if (ischar (arg))
        fmt = [deblank(arg) "%-+" arg(2:end) "i"];
      elseif (isnumeric (arg) && isscalar (arg) && arg >= 0 && arg == fix (arg))
        fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", arg+7, arg, arg+7, arg);
      else
        error ("num2str: PRECISION must be a scalar integer >= 0");
      endif
    else
      ## Set up a suitable format string while ignoring Inf/NaN entries
      valid_real = isfinite (real (x(:)));
      valid_imag = isfinite (imag (x(:)));
      ndgt = floor (log10 (max (max (abs (real (x(valid_real)))),
                                max (abs (imag (x(valid_imag)))))));
      if (isempty (ndgt) || ndgt == -Inf)
        ndgt = 0;  # All Inf or all zero array
      endif

      if (any (x(valid_real & valid_imag) != fix (x(valid_real & valid_imag))))
        ## Floating point input
        ndgt = max (ndgt + 5, 5);   # Keep at least 5 significant digits
        ndgt = min (ndgt, 16);      # Cap significant digits at 16
        fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", ndgt+7, ndgt, ndgt+7, ndgt);
      else
        ## Integer input
        ndgt += 3;
        ## FIXME: Integers must be masked to show only 16 significant digits
        ##        See test case for bug #36133 below
        fmt = sprintf ("%%%d.0f%%-+%d.0fi", ndgt, ndgt);
      endif
    endif

    ## Manipulate the complex value to have real values in the odd
    ## columns and imaginary values in the even columns.
    nd = ndims (x);
    nc = columns (x);
    idx = repmat ({':'}, nd, 1);
    perm(1:2:2*nc) = 1:nc;
    perm(2:2:2*nc) = nc + (1:nc);
    idx{2} = perm;
    x = horzcat (real (x), imag (x));
    x = x(idx{:});

    fmt = [deblank(repmat(fmt, 1, nc * (nd - 1))), "\n"];
    tmp = sprintf (fmt, permute (x, [2, 3:nd, 1]));

    ## Put the "i"'s where they are supposed to be.
    tmp = regexprep (tmp, " +i\n", "i\n");
    tmp = regexprep (tmp, "( +)i", "i$1");

    retval = strtrim (char (ostrsplit (tmp(1:end-1), "\n")));
  endif

endfunction


## Basic tests
%!assert (num2str (123), "123")
%!assert (num2str (1.23), "1.23")
%!assert (num2str (123.456, 4), "123.5")
%!assert (num2str ([1, 1.34; 3, 3.56], "%5.1f"), ["1.0  1.3"; "3.0  3.6"])
%!assert (num2str (1.234 + 27.3i), "1.234+27.3i")
%!assert (num2str ([true false true]), "1  0  1")

## Exceptional values
%!assert (num2str (19440606), "19440606")
%!assert (num2str (2^33), "8589934592")
%!assert (num2str (-2^33), "-8589934592")
%!assert (num2str (2^33+1i), "8589934592+1i")
%!assert (num2str (-2^33+1i), "-8589934592+1i")
%!assert (num2str ([0 0 0]), "0  0  0")
%!assert (num2str (inf), "Inf")
%!assert (num2str ([inf -inf]), "Inf -Inf")
%!assert (num2str ([inf NaN -inf]), "Inf  NaN -Inf")
%!assert (num2str ([complex(Inf,0), complex(0,-Inf)]), "Inf+0i   0-Infi")
%!assert (num2str (complex(Inf,1)), "Inf+1i")
%!assert (num2str (complex(1,Inf)), "1+Infi")
%!assert (num2str (nan), "NaN")
%!assert (num2str (complex (NaN, 1)), "NaN+1i")
%!assert (num2str (complex (1, NaN)), "1+NaNi")
%!assert (num2str (NA), "NA")
%!assert (num2str (complex (NA, 1)), "NA+1i")
%!assert (num2str (complex (1, NA)), "1+NAi")

## ND-arrays are concatenated in columns
%!shared m, x
%! m = magic (3);
%! x = cat (3, m, -m);

## real case
%!test <*46770>
%! y = num2str (x);
%! assert (rows (y) == 3);
%! assert (y, ["8  1  6 -8 -1 -6"
%!             "3  5  7 -3 -5 -7"
%!             "4  9  2 -4 -9 -2"]);

## complex case
%!test <*46770>
%! x(1,1,2) = -8+2i;
%! y = num2str (x);
%! assert (rows (y) == 3);
%! assert (y, ["8+0i   1+0i   6+0i  -8+2i  -1+0i  -6+0i"
%!             "3+0i   5+0i   7+0i  -3+0i  -5+0i  -7+0i"
%!             "4+0i   9+0i   2+0i  -4+0i  -9+0i  -2+0i"]);

## Clear shared variables
%!shared

## Integers greater than 1e15 should switch to exponential notation
%!assert <*36133> (num2str (1e15), "1000000000000000")
%!assert <*36133> (num2str (1e16), "1e+16")
## Even exact integers in IEEE notation should use exponential notation
%!assert <*36133> (num2str(2^512), "1.34078079299426e+154")
## Mixed integer/floating point arrays
%!assert <*36133> (num2str ([2.1, 1e23, pi]),
%!                 "2.1  9.999999999999999e+22      3.141592653589793")

## Large integers should not switch sign when printed due to overflow
%!assert <*36121> (num2str (2.4e9, 15), "2400000000")

## Test for extra rows generated from newlines in format
%!assert <*44864> (rows (num2str (magic (3), "%3d %3d %3d\n")), 3)

## Test that string conversion of numeric objects results in characters
## if the numbers are within range for ASCII.
%!assert <*45174> (num2str ([65 66 67], "%s"), "ABC")

## Test input validation
%!error num2str ()
%!error num2str (1, 2, 3)
%!error <X must be a numeric> num2str ({1})
%!error <PRECISION must be a scalar integer .= 0> num2str (1, {1})
%!error <PRECISION must be a scalar integer .= 0> num2str (1, ones (2))
%!error <PRECISION must be a scalar integer .= 0> num2str (1, -1)
%!error <PRECISION must be a scalar integer .= 0> num2str (1, 1.5)
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, {1})
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, ones (2))
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, -1)
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, 1.5)