view scripts/ode/ode15i.m @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 6bd408bde569
children 1891570abac8
line wrap: on
line source

## Copyright (C) 2016-2019 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this distribution
## or <https://octave.org/COPYRIGHT.html/>.
##
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {[@var{t}, @var{y}] =} ode15i (@var{fun}, @var{trange}, @var{y0}, @var{yp0})
## @deftypefnx {} {[@var{t}, @var{y}] =} ode15i (@var{fun}, @var{trange}, @var{y0}, @var{yp0}, @var{ode_opt})
## @deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode15i (@dots{})
## @deftypefnx {} {@var{solution} =} ode15i (@dots{})
## @deftypefnx {} {} ode15i (@dots{})
## Solve a set of fully-implicit Ordinary Differential Equations (ODEs) or
## index 1 Differential Algebraic Equations (DAEs).
##
## @code{ode15i} uses a variable step, variable order BDF (Backward
## Differentiation Formula) method that ranges from order 1 to 5.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function that defines the ODE: @code{0 = f(t,y,yp)}.  The
## function must accept three inputs where the first is time @var{t}, the
## second is the function value @var{y} (a column vector), and the third
## is the derivative value @var{yp} (a column vector).
##
## @var{trange} specifies the time interval over which the ODE will be
## evaluated.  Typically, it is a two-element vector specifying the initial and
## final times (@code{[tinit, tfinal]}).  If there are more than two elements
## then the solution will also be evaluated at these intermediate time
## instances.
##
## @var{y0} and @var{yp0} contain the initial values for the unknowns @var{y}
## and @var{yp}.  If they are row vectors then the solution @var{y} will be a
## matrix in which each column is the solution for the corresponding initial
## value in @var{y0} and @var{yp0}.
##
## @var{y0} and @var{yp0} must be consistent initial conditions, meaning that
## @code{f(t,y0,yp0) = 0} is satisfied.  The function @code{decic} may be used
## to compute consistent initial conditions given initial guesses.
##
## The optional fifth argument @var{ode_opt} specifies non-default options to
## the ODE solver.  It is a structure generated by @code{odeset}.
##
## The function typically returns two outputs.  Variable @var{t} is a
## column vector and contains the times where the solution was found.  The
## output @var{y} is a matrix in which each column refers to a different
## unknown of the problem and each row corresponds to a time in @var{t}.
##
## The output can also be returned as a structure @var{solution} which has a
## field @var{x} containing a row vector of times where the solution was
## evaluated and a field @var{y} containing the solution matrix such that each
## column corresponds to a time in @var{x}.  Use
## @w{@code{fieldnames (@var{solution})}} to see the other fields and
## additional information returned.
##
## If no output arguments are requested, and no @code{OutputFcn} is specified
## in @var{ode_opt}, then the @code{OutputFcn} is set to @code{odeplot} and the
## results of the solver are plotted immediately.
##
## If using the @qcode{"Events"} option then three additional outputs may be
## returned.  @var{te} holds the time when an Event function returned a zero.
## @var{ye} holds the value of the solution at time @var{te}.  @var{ie}
## contains an index indicating which Event function was triggered in the case
## of multiple Event functions.
##
## Example: Solve @nospell{Robertson's} equations:
##
## @smallexample
## @group
## function r = robertson_dae (@var{t}, @var{y}, @var{yp})
##   r = [ -(@var{yp}(1) + 0.04*@var{y}(1) - 1e4*@var{y}(2)*@var{y}(3))
##         -(@var{yp}(2) - 0.04*@var{y}(1) + 1e4*@var{y}(2)*@var{y}(3) + 3e7*@var{y}(2)^2)
##         @var{y}(1) + @var{y}(2) + @var{y}(3) - 1 ];
## endfunction
## [@var{t},@var{y}] = ode15i (@@robertson_dae, [0, 1e3], [1; 0; 0], [-1e-4; 1e-4; 0]);
## @end group
## @end smallexample
## @seealso{decic, odeset, odeget}
## @end deftypefn

function varargout = ode15i (fun, trange, y0, yp0, varargin)

  if (nargin < 4)
    print_usage ();
  endif

  solver = "ode15i";

  n = numel (y0);

  if (nargin > 4)
   options = varargin{1};
  else
   options = odeset ();
  endif

  ## Check fun, trange, y0, yp0
  fun = check_default_input (fun, trange, solver, y0, yp0);

  if (! isempty (options.Jacobian))
    if (ischar (options.Jacobian))
      try
        options.Jacobian = str2func (options.Jacobian);
      catch
        warning (lasterr);
      end_try_catch
      if (! is_function_handle (options.Jacobian))
        error ("Octave:invalid-input-arg",
               [solver ": invalid value assigned to field 'Jacobian'"]);
      endif
    endif
  endif

  if (! isempty (options.OutputFcn))
    if (ischar (options.OutputFcn))
      try
        options.OutputFcn = str2func (options.OutputFcn);
      catch
        warning (lasterr);
      end_try_catch
      if (! is_function_handle (options.OutputFcn))
        error ("Octave:invalid-input-arg",
               [solver ": invalid value assigned to field 'OutputFcn'"]);
      endif
    endif
  endif

  if (! isempty (options.Events))
    if (ischar (options.Events))
      try
        options.Events = str2func (options.Events);
      catch
        warning (lasterr);
      end_try_catch
      if (! is_function_handle (options.Events)
          && ! ismatrix (options.Events))
        error ("Octave:invalid-input-arg",
               [solver ": invalid value assigned to field 'Events'"]);
      endif
    endif
  endif

  [defaults, classes, attributes] = odedefaults (n, trange(1), trange(end));

  persistent ignorefields = {"NonNegative", "Mass", ...
                             "MStateDependence", "MvPattern", ...
                             "MassSingular", "InitialSlope", "BDF"};

  defaults   = rmfield (defaults, ignorefields);
  classes    = rmfield (classes, ignorefields);
  attributes = rmfield (attributes, ignorefields);

  classes    = odeset (classes, "Vectorized", {});
  attributes = odeset (attributes, "Jacobian", {}, "Vectorized", {});

  options = odemergeopts ("ode15i", options, defaults,
                          classes, attributes, solver);

  ## Jacobian
  options.havejac       = false;
  options.havejacsparse = false;
  options.havejacfun    = false;

  if (! isempty (options.Jacobian))
    options.havejac = true;
    if (iscell (options.Jacobian))
      if (numel (options.Jacobian) == 2)
        if (issparse (options.Jacobian{1}) && issparse (options.Jacobian{2}))
          options.havejacsparse = true;  # Jac is sparse cell
        endif

        if (any (size (options.Jacobian{1}) != [n n])
            || any (size (options.Jacobian{2}) != [n n])
            || ! isnumeric (options.Jacobian{1})
            || ! isnumeric (options.Jacobian{2})
            || ! isreal (options.Jacobian{1})
            || ! isreal (options.Jacobian{2}))
          error ("Octave:invalid-input-arg",
                 [solver ": invalid value assigned to field 'Jacobian'"]);
        endif
      else
        error ("Octave:invalid-input-arg",
               [solver ": invalid value assigned to field 'Jacobian'"]);
      endif

    elseif (is_function_handle (options.Jacobian))
      options.havejacfun = true;
      if (nargin (options.Jacobian) == 3)
        [A, B] = options.Jacobian (trange(1), y0, yp0);
        if (issparse (A) && issparse (B))
          options.havejacsparse = true;  # Jac is sparse fun
        endif

        if (any (size (A) != [n n]) || any (size (B) != [n n])
            || ! isnumeric (A) || ! isnumeric (B) || ! isreal (A)
            || ! isreal (B))
          error ("Octave:invalid-input-arg",
                 [solver ": invalid value assigned to field 'Jacobian'"]);
        endif
      else
        error ("Octave:invalid-input-arg",
               [solver ": invalid value assigned to field 'Jacobian'"]);
      endif
    else
        error ("Octave:invalid-input-arg",
               [solver ": invalid value assigned to field 'Jacobian'"]);
    endif
  endif

  ## Abstol and Reltol
  options.haveabstolvec = false;

  if (numel (options.AbsTol) != 1 && numel (options.AbsTol) != n)
    error ("Octave:invalid-input-arg",
           [solver ": invalid value assigned to field 'AbsTol'"]);

  elseif (numel (options.AbsTol) == n)
    options.haveabstolvec = true;
  endif

  ## Stats
  options.havestats = strcmpi (options.Stats, "on");

  ## Don't use Refine when the output is a structure
  if (nargout == 1)
    options.Refine = 1;
  endif

  ## OutputFcn and OutputSel
  if (isempty (options.OutputFcn) && nargout == 0)
    options.OutputFcn = @odeplot;
    options.haveoutputfunction = true;
  else
    options.haveoutputfunction = ! isempty (options.OutputFcn);
  endif

  options.haveoutputselection = ! isempty (options.OutputSel);
  if (options.haveoutputselection)
    options.OutputSel = options.OutputSel - 1;
  endif

  ## Events
  options.haveeventfunction = ! isempty (options.Events);

  [t, y, te, ye, ie] = __ode15__ (fun, trange, y0, yp0, options);

  if (nargout == 2)
    varargout{1} = t;
    varargout{2} = y;
  elseif (nargout == 1)
    varargout{1}.x = t;  # Time stamps are saved in field x
    varargout{1}.y = y;  # Results are saved in field y
    varargout{1}.solver = solver;
    if (options.haveeventfunction)
      varargout{1}.xe = te;  # Time info when an event occurred
      varargout{1}.ye = ye;  # Results when an event occurred
      varargout{1}.ie = ie;  # Index info which event occurred
    endif
  elseif (nargout > 2)
    varargout = cell (1,5);
    varargout{1} = t;
    varargout{2} = y;
    if (options.haveeventfunction)
      varargout{3} = te;  # Time info when an event occurred
      varargout{4} = ye;  # Results when an event occurred
      varargout{5} = ie;  # Index info which event occurred
    endif
  endif

endfunction


%!demo
%! ## Solve Robertson's equations with ode15i
%! fun = @(t, y, yp) [-(yp(1) + 0.04*y(1) - 1e4*y(2)*y(3));
%!                    -(yp(2) - 0.04*y(1) + 1e4*y(2)*y(3) + 3e7*y(2)^2);
%!                    y(1) + y(2) + y(3) - 1];
%!
%! opt = odeset ("RelTol", 1e-4, "AbsTol", [1e-8, 1e-14, 1e-6]);
%! y0 = [1; 0; 0];
%! yp0 = [-1e-4; 1e-4; 0];
%! tspan = [0 4*logspace(-6, 6)];
%!
%! [t, y] = ode15i (fun, tspan, y0, yp0, opt);
%!
%! y(:,2) = 1e4 * y(:, 2);
%! figure (2);
%! semilogx (t, y, "o");
%! xlabel ("time");
%! ylabel ("species concentration");
%! title ("Robertson DAE problem with a Conservation Law");
%! legend ("y1", "y2", "y3");

%!function res = rob (t, y, yp)
%!  res =[-(yp(1) + 0.04*y(1) - 1e4*y(2)*y(3));
%!        -(yp(2) - 0.04*y(1) + 1e4*y(2)*y(3) + 3e7*y(2)^2);
%!        y(1) + y(2) + y(3) - 1];
%!endfunction
%!
%!function ref = fref ()
%!  ref = [100, 0.617234887614937, 0.000006153591397, 0.382758958793666];
%!endfunction
%!
%!function ref2 = fref2 ()
%!  ref2 = [4e6 0 0 1];
%!endfunction
%!
%!function [DFDY, DFDYP] = jacfundense (t, y, yp)
%!  DFDY = [-0.04,           1e4*y(3),  1e4*y(2);
%!           0.04, -1e4*y(3)-6e7*y(2), -1e4*y(2);
%!              1,                  1,         1];
%!  DFDYP = [-1,  0, 0;
%!            0, -1, 0;
%!            0,  0, 0];
%!endfunction
%!
%!function [DFDY, DFDYP] = jacfunsparse (t, y, yp)
%!  DFDY = sparse ([-0.04,           1e4*y(3),  1e4*y(2);
%!                   0.04, -1e4*y(3)-6e7*y(2), -1e4*y(2);
%!                      1,                  1,         1]);
%!  DFDYP = sparse ([-1,  0, 0;
%!                    0, -1, 0;
%!                    0,  0, 0]);
%!endfunction
%!
%!function [DFDY, DFDYP] = jacwrong (t, y, yp)
%!  DFDY = [-0.04,           1e4*y(3);
%!           0.04, -1e4*y(3)-6e7*y(2)];
%!  DFDYP = [-1,  0;
%!            0, -1];
%!endfunction
%!
%!function [DFDY, DFDYP, A] = jacwrong2 (t, y, yp)
%!  DFDY = [-0.04,           1e4*y(3),  1e4*y(2);
%!           0.04, -1e4*y(3)-6e7*y(2), -1e4*y(2);
%!              1,                  1,         1];
%!  DFDYP = [-1,  0, 0;
%!            0, -1, 0;
%!            0,  0, 0];
%!  A = DFDY;
%!endfunction
%!
%!function [val, isterminal, direction] = ff (t, y, yp)
%!  isterminal = [0, 1];
%!  if (t < 1e1)
%!    val = [-1, -2];
%!  else
%!    val = [1, 3];
%!  endif
%!
%!  direction = [1, 0];
%!endfunction

## anonymous function instead of real function
%!testif HAVE_SUNDIALS
%! ref = 0.049787079136413;
%! ff = @(t, u, udot)  udot + 3 * u;
%! [t, y] = ode15i (ff, 0:1, 1, -3);
%! assert ([t(end), y(end)], [1, ref], 1e-3);

## function passed as string
%!testif HAVE_SUNDIALS
%! [t, y] = ode15i ("rob", [0, 100, 200], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! assert ([t(2), y(2,:)], fref, 1e-3);

##  solve in intermidiate step
%!testif HAVE_SUNDIALS
%! [t, y] = ode15i (@rob, [0, 100, 200], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! assert ([t(2), y(2,:)], fref, 1e-3);

## numel(trange) = 2 final value
%!testif HAVE_SUNDIALS
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! assert ([t(end), y(end,:)], fref, 1e-5);

## With empty options
%!testif HAVE_SUNDIALS
%! opt = odeset();
%! [t, y] = ode15i (@rob, [0, 1e6, 2e6, 3e6, 4e6], [1; 0; 0],
%!                  [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref2, 1e-3);
%! opt = odeset();

## Without options
%!testif HAVE_SUNDIALS
%! [t, y] = ode15i (@rob, [0, 1e6, 2e6, 3e6, 4e6], [1; 0; 0],[-1e-4; 1e-4; 0]);
%! assert ([t(end), y(end,:)], fref2, 1e-3);

## InitialStep option
%!testif HAVE_SUNDIALS
%! opt = odeset ("InitialStep", 1e-8);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert (t(2)-t(1), 1e-8, 1e-9);

## MaxStep option
%!testif HAVE_SUNDIALS
%! opt = odeset ("MaxStep", 1e-3);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! assert (t(5)-t(4), 1e-3, 1e-3);

## AbsTol scalar option
%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", 1e-8);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## AbsTol scalar and RelTol option
%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", 1e-8, "RelTol", 1e-6);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## AbsTol vector option
%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", [1e-8, 1e-14, 1e-6]);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## AbsTol vector and RelTol option
%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", [1e-8, 1e-14,1e-6], "RelTol", 1e-6);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4;1e-4;0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## RelTol option
%!testif HAVE_SUNDIALS
%! opt = odeset ("RelTol", 1e-6);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## Jacobian fun dense
%!testif HAVE_SUNDIALS
%! opt = odeset ("Jacobian", @jacfundense);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## Jacobian fun dense as string
%!testif HAVE_SUNDIALS
%! opt = odeset ("Jacobian", "jacfundense");
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## Jacobian fun sparse
%!testif HAVE_SUNDIALS_SUNLINSOL_KLU
%! opt = odeset ("Jacobian", @jacfunsparse, "AbsTol", 1e-7, "RelTol", 1e-7);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), y(end,:)], fref, 1e-3);

## Solve in backward direction starting at t=100
%!testif HAVE_SUNDIALS
%! YPref = [-0.001135972751027; -0.000000027483627; 0.001136000234654];
%! Yref = [0.617234887614937, 0.000006153591397, 0.382758958793666];
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! [t2, y2] = ode15i (@rob, [100, 0], Yref', YPref);
%! assert ([t2(end), y2(end,:)], [0, 1, 0, 0], 2e-2);

## Solve in backward direction with MaxStep option
#%!testif HAVE_SUNDIALS
%! YPref = [-0.001135972751027; -0.000000027483627; 0.001136000234654];
%! Yref = [0.617234887614937, 0.000006153591397, 0.382758958793666];
%! opt = odeset ("MaxStep", 1e-2);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! [t2, y2] = ode15i (@rob, [100, 0], Yref', YPref, opt);
%! assert ([t2(end), y2(end,:)], [0, 1, 0, 0], 2e-2);
%! assert (t2(9)-t2(10), 1e-2, 1e-2);

## Solve in backward direction starting with intermediate step
#%!testif HAVE_SUNDIALS
%! YPref = [-0.001135972751027; -0.000000027483627; 0.001136000234654];
%! Yref = [0.617234887614937, 0.000006153591397, 0.382758958793666];
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! [t2, y2] = ode15i (@rob, [100, 5, 0], Yref', YPref);
%! assert ([t2(end), y2(end,:)], [0, 1, 0, 0], 2e-2);

## Refine
%!testif HAVE_SUNDIALS
%! opt = odeset ("Refine", 3);
%! [t, y] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! [t2, y2] = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert (numel (t2), numel (t) * 3, 3);

## Refine ignored if numel (trange) > 2
%!testif HAVE_SUNDIALS
%! opt = odeset ("Refine", 3);
%! [t, y] = ode15i (@rob, [0, 10, 100], [1; 0; 0], [-1e-4; 1e-4; 0]);
%! [t2, y2] = ode15i (@rob, [0, 10, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert (numel (t2), numel (t));

## Events option add further elements in sol
%!testif HAVE_SUNDIALS
%! opt = odeset ("Events", @ff);
%! sol = ode15i (@rob, [0, 100], [1; 0; 0], [-1e-4; 1e-4; 0], opt);
%! assert (isfield (sol, "ie"));
%! assert (sol.ie, [0;1]);
%! assert (isfield (sol, "xe"));
%! assert (isfield (sol, "ye"));
%! assert (sol.x(end), 10, 1);

## Events option, five output arguments
%!testif HAVE_SUNDIALS
%! opt = odeset ("Events", @ff);
%! [t, y, te, ye, ie] = ode15i (@rob, [0, 100], [1; 0; 0],
%!                              [-1e-4; 1e-4; 0], opt);
%! assert ([t(end), te', ie'], [10, 10, 10, 0, 1], [1, 0.2, 0.2, 0, 0]);

## Initial solutions as row vectors
%!testif HAVE_SUNDIALS
%! A = eye (2);
%! [tout, yout] = ode15i (@(t, y, yp) A * y - A * yp, ...
%! [0, 1], [1, 1], [1, 1]);
%! assert (size (yout), [20, 2])

%!testif HAVE_SUNDIALS
%! A = eye (2);
%! [tout, yout] = ode15i (@(t, y, yp) A * y - A * yp, ...
%! [0, 1], [1, 1], [1; 1]);
%! assert (size (yout), [20, 2])

## Jacobian fun wrong dimension
%!testif HAVE_SUNDIALS
%! opt = odeset ("Jacobian", @jacwrong);
%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
%!       "ode15i: invalid value assigned to field 'Jacobian'");

## Jacobian cell dense wrong dimension
%!testif HAVE_SUNDIALS
%! DFDY = [-0.04, 1;
%!          0.04, 1];
%! DFDYP = [-1,  0, 0;
%!           0, -1, 0;
%!           0,  0, 0];
%! opt = odeset ("Jacobian", {DFDY, DFDYP});
%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
%!       "invalid value assigned to field 'Jacobian'");

## Jacobian cell sparse wrong dimension
%!testif HAVE_SUNDIALS_SUNLINSOL_KLU
%! DFDY = sparse ([-0.04, 1;
%!                  0.04, 1]);
%! DFDYP = sparse ([-1,  0, 0;
%!                   0, -1, 0;
%!                   0,  0, 0]);
%! opt = odeset ("Jacobian", {DFDY, DFDYP});
%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
%!       "invalid value assigned to field 'Jacobian'");

## Jacobian cell wrong number of matrices
%!testif HAVE_SUNDIALS
%! A = [1 2 3; 4 5 6; 7 8 9];
%! opt = odeset ("Jacobian", {A,A,A});
%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
%!       "invalid value assigned to field 'Jacobian'");

## Jacobian single matrix
%!testif HAVE_SUNDIALS
%! opt = odeset ("Jacobian", [1 2 3; 4 5 6; 7 8 9]);
%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
%!       "invalid value assigned to field 'Jacobian'");

## Jacobian single matrix wrong dimension
%!testif HAVE_SUNDIALS
%! opt = odeset ("Jacobian", [1 2 3; 4 5 6]);
%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
%!       "invalid value assigned to field 'Jacobian'");

## Jacobian strange field
## FIXME: for compatibility with Matlab, it is no longer an error to
## create a handle to a nonexistent function and ode15i just checks that
## the argument is a function handle (it is) so there is no error for
## this case now.  If this check really must be done early, before
## attempting to use the invalid function handle, then one way is to
## call "functions" on it and catch the error if it is invalid.
##%!testif HAVE_SUNDIALS
##%! opt = odeset ("Jacobian", "_5yVNhWVJWJn47RKnzxPsyb_");
##%! fail ("[t, y] = ode15i (@rob, [0, 4e6], [1; 0; 0], [-1e-4; 1e-4; 0], opt)",
##%!       "invalid value assigned to field 'Jacobian'");

%!function ydot = fun (t, y, yp)
%!  ydot = [y - yp];
%!endfunction

%!testif HAVE_SUNDIALS
%! fail ("ode15i ()", "Invalid call to ode15i");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (1)", "Invalid call to ode15i");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (1, 1)", "Invalid call to ode15i");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (1, 1, 1)", "Invalid call to ode15i");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (1, 1, 1, 1)", "ode15i: fun must be of class:");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (1, 1, 1, 1, 1)", "ode15i: fun must be of class:");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (1, 1, 1, 1, 1, 1)", "ode15i: fun must be of class:");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (@fun, 1, 1, 1)",
%!       "ode15i: invalid value assigned to field 'trange'");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (@fun, [1, 1], 1, 1)",
%!       "ode15i: invalid value assigned to field 'trange'");

%!testif HAVE_SUNDIALS
%! fail ("ode15i (@fun, [1, 2], 1, [1, 2])",
%!       "ode15i: y0 must have 2 elements");

%!testif HAVE_SUNDIALS
%! opt = odeset ("RelTol", "_5yVNhWVJWJn47RKnzxPsyb_");
%! fail ("[t, y] = ode15i (@fun, [0, 2], 2, 2, opt)",
%!       "ode15i: RelTol must be of class:");

%!testif HAVE_SUNDIALS
%! opt = odeset ("RelTol", [1, 2]);
%! fail ("[t, y] = ode15i (@fun, [0, 2], 2, 2, opt)",
%!       "ode15i: RelTol must be scalar");

%!testif HAVE_SUNDIALS
%! opt = odeset ("RelTol", -2);
%! fail ("[t, y] = ode15i (@fun, [0, 2], 2, 2, opt)",
%!       "ode15i: RelTol must be positive");

%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", "_5yVNhWVJWJn47RKnzxPsyb_");
%! fail ("[t, y] = ode15i (@fun, [0, 2], 2, 2, opt)",
%!       "ode15i: AbsTol must be of class:");

%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", -1);
%! fail ("[t, y] = ode15i (@fun, [0, 2], 2, 2, opt)",
%!       "ode15i: AbsTol must be positive");

%!testif HAVE_SUNDIALS
%! opt = odeset ("AbsTol", [1, 1, 1]);
%! fail ("[t, y] = ode15i (@fun, [0, 2], 2, 2, opt)",
%!       "ode15i: invalid value assigned to field 'AbsTol'");

%!testif HAVE_SUNDIALS
%! A = zeros (2);
%! fail ("ode15i (@(t, y, yp) A * y - A * yp, [0, 1], eye (2), [1, 1])",
%!       "ode15i: Y0 must be a numeric vector");

%!testif HAVE_SUNDIALS
%! A = zeros (2);
%! fail ("ode15i (@(t, y, yp) A * y - A * yp, [0, 1], [1, 1], eye (2))",
%!       "ode15i: YP0 must be a numeric vector");