view scripts/ode/ode23.m @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 00f796120a6d
children 1891570abac8
line wrap: on
line source

## Copyright (C) 2006-2019 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this distribution
## or <https://octave.org/COPYRIGHT.html/>.
##
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {[@var{t}, @var{y}] =} ode23 (@var{fun}, @var{trange}, @var{init})
## @deftypefnx {} {[@var{t}, @var{y}] =} ode23 (@var{fun}, @var{trange}, @var{init}, @var{ode_opt})
## @deftypefnx {} {[@var{t}, @var{y}, @var{te}, @var{ye}, @var{ie}] =} ode23 (@dots{})
## @deftypefnx {} {@var{solution} =} ode23 (@dots{})
## @deftypefnx {} {} ode23 (@dots{})
##
## Solve a set of non-stiff Ordinary Differential Equations (non-stiff ODEs)
## with the well known explicit @nospell{Bogacki-Shampine} method of order 3.
##
## @var{fun} is a function handle, inline function, or string containing the
## name of the function that defines the ODE: @code{y' = f(t,y)}.  The function
## must accept two inputs where the first is time @var{t} and the second is a
## column vector of unknowns @var{y}.
##
## @var{trange} specifies the time interval over which the ODE will be
## evaluated.  Typically, it is a two-element vector specifying the initial and
## final times (@code{[tinit, tfinal]}).  If there are more than two elements
## then the solution will also be evaluated at these intermediate time
## instances.
##
## By default, @code{ode23} uses an adaptive timestep with the
## @code{integrate_adaptive} algorithm.  The tolerance for the timestep
## computation may be changed by using the options @qcode{"RelTol"} and
## @qcode{"AbsTol"}.
##
## @var{init} contains the initial value for the unknowns.  If it is a row
## vector then the solution @var{y} will be a matrix in which each column is
## the solution for the corresponding initial value in @var{init}.
##
## The optional fourth argument @var{ode_opt} specifies non-default options to
## the ODE solver.  It is a structure generated by @code{odeset}.
##
## The function typically returns two outputs.  Variable @var{t} is a
## column vector and contains the times where the solution was found.  The
## output @var{y} is a matrix in which each column refers to a different
## unknown of the problem and each row corresponds to a time in @var{t}.
##
## The output can also be returned as a structure @var{solution} which has a
## field @var{x} containing a row vector of times where the solution was
## evaluated and a field @var{y} containing the solution matrix such that each
## column corresponds to a time in @var{x}.  Use
## @w{@code{fieldnames (@var{solution})}} to see the other fields and
## additional information returned.
##
## If no output arguments are requested, and no @code{OutputFcn} is specified
## in @var{ode_opt}, then the @code{OutputFcn} is set to @code{odeplot} and the
## results of the solver are plotted immediately.
##
## If using the @qcode{"Events"} option then three additional outputs may be
## returned.  @var{te} holds the time when an Event function returned a zero.
## @var{ye} holds the value of the solution at time @var{te}.  @var{ie}
## contains an index indicating which Event function was triggered in the case
## of multiple Event functions.
##
## Example: Solve the @nospell{Van der Pol} equation
##
## @example
## @group
## fvdp = @@(@var{t},@var{y}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
## [@var{t},@var{y}] = ode23 (fvdp, [0, 20], [2, 0]);
## @end group
## @end example
##
## Reference: For the definition of this method see
## @url{https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods}.
## @seealso{odeset, odeget, ode45, ode15s}
## @end deftypefn

function varargout = ode23 (fun, trange, init, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  order  = 3;
  solver = "ode23";

  if (nargin >= 4)
    if (! isstruct (varargin{1}))
      ## varargin{1:len} are parameters for fun
      odeopts = odeset ();
      funarguments = varargin;
    elseif (numel (varargin) > 1)
      ## varargin{1} is an ODE options structure opt
      odeopts = varargin{1};
      funarguments = {varargin{2:numel (varargin)}};
    else  # if (isstruct (varargin{1}))
      odeopts = varargin{1};
      funarguments = {};
    endif
  else  # nargin == 3
    odeopts = odeset ();
    funarguments = {};
  endif

  if (! isnumeric (trange) || ! isvector (trange))
    error ("Octave:invalid-input-arg",
           "ode23: TRANGE must be a numeric vector");
  endif

  if (numel (trange) < 2)
    error ("Octave:invalid-input-arg",
           "ode23: TRANGE must contain at least 2 elements");
  elseif (trange(2) == trange(1))
    error ("Octave:invalid-input-arg",
           "ode23: invalid time span, TRANGE(1) == TRANGE(2)");
  else
    direction = sign (trange(2) - trange(1));
  endif
  trange = trange(:);

  if (! isnumeric (init) || ! isvector (init))
    error ("Octave:invalid-input-arg",
           "ode23: INIT must be a numeric vector");
  endif
  init = init(:);

  if (ischar (fun))
    try
      fun = str2func (fun);
    catch
      warning (lasterr);
    end_try_catch
  endif
  if (! is_function_handle (fun))
    error ("Octave:invalid-input-arg",
           "ode23: FUN must be a valid function handle");
  endif

  ## Start preprocessing, have a look which options are set in odeopts,
  ## check if an invalid or unused option is set.
  [defaults, classes, attributes] = odedefaults (numel (init),
                                                 trange(1), trange(end));

  persistent ode23_ignore_options = ...
    {"BDF", "InitialSlope", "Jacobian", "JPattern",
     "MassSingular", "MaxOrder", "MvPattern", "Vectorized"};

  defaults   = rmfield (defaults, ode23_ignore_options);
  classes    = rmfield (classes, ode23_ignore_options);
  attributes = rmfield (attributes, ode23_ignore_options);

  odeopts = odemergeopts ("ode23", odeopts, defaults, classes, attributes);

  odeopts.funarguments = funarguments;
  odeopts.direction    = direction;

  if (! isempty (odeopts.NonNegative))
    if (isempty (odeopts.Mass))
      odeopts.havenonnegative = true;
    else
      odeopts.havenonnegative = false;
      warning ("Octave:invalid-input-arg",
               ['ode23: option "NonNegative" is ignored', ...
                " when mass matrix is set\n"]);
    endif
  else
    odeopts.havenonnegative = false;
  endif

  if (isempty (odeopts.OutputFcn) && nargout == 0)
    odeopts.OutputFcn = @odeplot;
    odeopts.haveoutputfunction = true;
  else
    odeopts.haveoutputfunction = ! isempty (odeopts.OutputFcn);
  endif

  if (isempty (odeopts.InitialStep))
    odeopts.InitialStep = odeopts.direction * ...
                          starting_stepsize (order, fun, trange(1), init,
                                             odeopts.AbsTol, odeopts.RelTol,
                                             strcmpi (odeopts.NormControl, "on"),
                                             odeopts.funarguments);
  endif

  if (! isempty (odeopts.Mass) && isnumeric (odeopts.Mass))
    havemasshandle = false;
    mass = odeopts.Mass;    # constant mass
  elseif (is_function_handle (odeopts.Mass))
    havemasshandle = true;  # mass defined by a function handle
  else  # no mass matrix - creating a diag-matrix of ones for mass
    havemasshandle = false; # mass = diag (ones (length (init), 1), 0);
  endif

  ## Starting the initialization of the core solver ode23

  if (havemasshandle)   # Handle only the dynamic mass matrix,
    if (! strcmp (odeopts.MStateDependence, "none"))
      ## constant mass matrices have already been handled
      mass = @(t,x) odeopts.Mass (t, x, odeopts.funarguments{:});
      fun = @(t,x) mass (t, x, odeopts.funarguments{:}) ...
                   \ fun (t, x, odeopts.funarguments{:});
    else
      mass = @(t) odeopts.Mass (t, odeopts.funarguments{:});
      fun = @(t,x) mass (t, odeopts.funarguments{:}) ...
                   \ fun (t, x, odeopts.funarguments{:});
    endif
  endif

  if (nargout == 1)
    ## Single output requires auto-selected intermediate times,
    ## which is obtained by NOT specifying specific solution times.
    trange = [trange(1); trange(end)];
    odeopts.Refine = [];  # disable Refine when single output requested
  elseif (numel (trange) > 2)
    odeopts.Refine = [];  # disable Refine when specific times requested
  endif

  solution = integrate_adaptive (@runge_kutta_23,
                                 order, fun, trange, init, odeopts);

  ## Postprocessing, do whatever when terminating integration algorithm
  if (odeopts.haveoutputfunction)  # Cleanup plotter
    feval (odeopts.OutputFcn, [], [], "done", odeopts.funarguments{:});
  endif
  if (! isempty (odeopts.Events))   # Cleanup event function handling
    ode_event_handler (odeopts.Events, solution.t(end),
                       solution.x(end,:).', "done", odeopts.funarguments{:});
  endif

  ## Print additional information if option Stats is set
  if (strcmpi (odeopts.Stats, "on"))
    nsteps    = solution.cntloop;             # cntloop from 2..end
    nfailed   = solution.cntcycles - nsteps;  # cntcycl from 1..end
    nfevals   = 3 * solution.cntcycles + 1;   # number of ode evaluations
    ndecomps  = 0;  # number of LU decompositions
    npds      = 0;  # number of partial derivatives
    nlinsols  = 0;  # no. of solutions of linear systems

    printf ("Number of successful steps: %d\n", nsteps);
    printf ("Number of failed attempts:  %d\n", nfailed);
    printf ("Number of function calls:   %d\n", nfevals);
  endif

  if (nargout == 2)
    varargout{1} = solution.t;      # Time stamps are first output argument
    varargout{2} = solution.x;      # Results are second output argument
  elseif (nargout == 1)
    varargout{1}.x = solution.t.';   # Time stamps are saved in field x (row vector)
    varargout{1}.y = solution.x.';   # Results are saved in field y (row vector)
    varargout{1}.solver = solver;   # Solver name is saved in field solver
    if (! isempty (odeopts.Events))
      varargout{1}.xe = solution.event{3};  # Time info when an event occurred
      varargout{1}.ye = solution.event{4};  # Results when an event occurred
      varargout{1}.ie = solution.event{2};  # Index info which event occurred
    endif
    if (strcmpi (odeopts.Stats, "on"))
      varargout{1}.stats = struct ();
      varargout{1}.stats.nsteps   = nsteps;
      varargout{1}.stats.nfailed  = nfailed;
      varargout{1}.stats.nfevals  = nfevals;
      varargout{1}.stats.npds     = npds;
      varargout{1}.stats.ndecomps = ndecomps;
      varargout{1}.stats.nlinsols = nlinsols;
    endif
  elseif (nargout > 2)
    varargout = cell (1,5);
    varargout{1} = solution.t;
    varargout{2} = solution.x;
    if (! isempty (odeopts.Events))
      varargout{3} = solution.event{3};  # Time info when an event occurred
      varargout{4} = solution.event{4};  # Results when an event occurred
      varargout{5} = solution.event{2};  # Index info which event occurred
    endif
  endif

endfunction


%!demo
%! ## Demonstrate convergence order for ode23
%! tol = 1e-5 ./ 10.^[0:8];
%! for i = 1 : numel (tol)
%!   opt = odeset ("RelTol", tol(i), "AbsTol", realmin);
%!   [t, y] = ode23 (@(t, y) -y, [0, 1], 1, opt);
%!   h(i) = 1 / (numel (t) - 1);
%!   err(i) = norm (y .* exp (t) - 1, Inf);
%! endfor
%!
%! ## Estimate order visually
%! loglog (h, tol, "-ob",
%!         h, err, "-b",
%!         h, (h/h(end)) .^ 2 .* tol(end), "k--",
%!         h, (h/h(end)) .^ 3 .* tol(end), "k-");
%! axis tight
%! xlabel ("h");
%! ylabel ("err(h)");
%! title ("Convergence plot for ode23");
%! legend ("imposed tolerance", "ode23 (relative) error",
%!         "order 2", "order 3", "location", "northwest");
%!
%! ## Estimate order numerically
%! p = diff (log (err)) ./ diff (log (h))

## We are using the Van der Pol equation for all tests.
## Further tests also define a reference solution (computed at high accuracy)
%!function ydot = fpol (t, y)  # The Van der Pol ODE
%!  ydot = [y(2); (1 - y(1)^2) * y(2) - y(1)];
%!endfunction
%!function ref = fref ()       # The computed reference sol
%!  ref = [0.32331666704577, -1.83297456798624];
%!endfunction
%!function [val, trm, dir] = feve (t, y, varargin)
%!  val = fpol (t, y, varargin);  # We use the derivatives
%!  trm = zeros (2,1);            # that's why component 2
%!  dir = ones (2,1);             # does not seem to be exact
%!endfunction
%!function [val, trm, dir] = fevn (t, y, varargin)
%!  val = fpol (t, y, varargin);  # We use the derivatives
%!  trm = ones (2,1);             # that's why component 2
%!  dir = ones (2,1);             # does not seem to be exact
%!endfunction
%!function mas = fmas (t, y, varargin)
%!  mas = [1, 0; 0, 1];           # Dummy mass matrix for tests
%!endfunction
%!function mas = fmsa (t, y, varargin)
%!  mas = sparse ([1, 0; 0, 1]);  # A sparse dummy matrix
%!endfunction
%!function out = fout (t, y, flag, varargin)
%!  out = false;
%!  if (strcmp (flag, "init"))
%!    if (! isequal (size (t), [2, 1]))
%!      error ('fout: step "init"');
%!    endif
%!  elseif (isempty (flag))
%!    if (! isequal (size (t), [1, 1]))
%!      error ('fout: step "calc"');
%!    endif
%!  elseif (strcmp (flag, "done"))
%!    if (! isempty (t))
%!      warning ('fout: step "done"');
%!    endif
%!  else
%!    error ("fout: invalid flag <%s>", flag);
%!  endif
%!endfunction
%!
%!test  # two output arguments
%! [t, y] = ode23 (@fpol, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # anonymous function instead of real function
%! fvdp = @(t,y) [y(2); (1 - y(1)^2) * y(2) - y(1)];
%! [t, y] = ode23 (fvdp, [0 2], [2 0]);
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # extra input arguments passed through
%! [t, y] = ode23 (@fpol, [0 2], [2 0], 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-3);
%!test  # empty OdePkg structure *but* extra input arguments
%! opt = odeset;
%! [t, y] = ode23 (@fpol, [0 2], [2 0], opt, 12, 13, "KL");
%! assert ([t(end), y(end,:)], [2, fref], 1e-2);
%!test  # Solve another anonymous function below zero
%! ref = [0, 14.77810590694212];
%! [t, y] = ode23 (@(t,y) y, [-2 0], 2);
%! assert ([t(end), y(end,:)], ref, 1e-2);
%!test  # InitialStep option
%! opt = odeset ("InitialStep", 1e-8);
%! [t, y] = ode23 (@fpol, [0 0.2], [2 0], opt);
%! assert ([t(2)-t(1)], [1e-8], 1e-9);
%!test  # MaxStep option
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode23 (@fpol, [0 0.2], [2 0], opt);
%! assert ([sol.x(5)-sol.x(4)], [1e-3], 1e-4);
%!test  # Solve in backward direction starting at t=0
%! ref = [-1.205364552835178, 0.951542399860817];
%! sol = ode23 (@fpol, [0 -2], [2 0]);
%! assert ([sol.x(end); sol.y(:,end)], [-2; ref'], 5e-3);
%!test  # Solve in backward direction starting at t=2
%! ref = [-1.205364552835178, 0.951542399860817];
%! sol = ode23 (@fpol, [2 0 -2], fref);
%! assert ([sol.x(end); sol.y(:,end)], [-2; ref'], 2e-2);
%!test  # Solve another anonymous function in backward direction
%! ref = [-1, 0.367879437558975];
%! sol = ode23 (@(t,y) y, [0 -1], 1);
%! assert ([sol.x(end); sol.y(:,end)], ref', 1e-2);
%!test  # Solve another anonymous function below zero
%! ref = [0, 14.77810590694212];
%! sol = ode23 (@(t,y) y, [-2 0], 2);
%! assert ([sol.x(end); sol.y(:,end)], ref', 1e-2);
%!test  # Solve in backward direction starting at t=0 with MaxStep option
%! ref = [-1.205364552835178, 0.951542399860817];
%! opt = odeset ("MaxStep", 1e-3);
%! sol = ode23 (@fpol, [0 -2], [2 0], opt);
%! assert ([abs(sol.x(8)-sol.x(7))], [1e-3], 1e-3);
%! assert ([sol.x(end); sol.y(:,end)], [-2; ref'], 1e-3);
%!test  # AbsTol option
%! opt = odeset ("AbsTol", 1e-5);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # AbsTol and RelTol option
%! opt = odeset ("AbsTol", 1e-8, "RelTol", 1e-8);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test # hermite_cubic_interpolation
%! opt = odeset ("RelTol", 1e-8, "NormControl", "on");
%! [t,sol] = ode23(@(t,x)[x(2);x(1)],linspace(0,1),[1;0],opt);
%! assert(max(abs(sol(:,1)-cosh(t))),0,1e-6)
%!test  # RelTol and NormControl option -- higher accuracy
%! opt = odeset ("RelTol", 1e-8, "NormControl", "on");
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-4);
%!test  # Keeps initial values while integrating
%! opt = odeset ("NonNegative", 2);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; 2; 0], 1e-1);
%!test  # Details of OutputSel and Refine can't be tested
%! opt = odeset ("OutputFcn", @fout, "OutputSel", 1, "Refine", 5);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%!test  # Stats must add further elements in sol
%! opt = odeset ("Stats", "on");
%! stat_str = evalc ("sol = ode23 (@fpol, [0 2], [2 0], opt);");
%! assert (strncmp (stat_str, "Number of successful steps:", 27));
%! assert (isfield (sol, "stats"));
%! assert (isfield (sol.stats, "nsteps"));
%!test  # Events option add further elements in sol
%! opt = odeset ("Events", @feve);
%! sol = ode23 (@fpol, [0 10], [2 0], opt);
%! assert (isfield (sol, "ie"));
%! assert (sol.ie(1), 2);
%! assert (isfield (sol, "xe"));
%! assert (isfield (sol, "ye"));
%!test  # Events option, now stop integration
%! warning ("off", "integrate_adaptive:unexpected_termination", "local");
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! sol = ode23 (@fpol, [0 10], [2 0], opt);
%! assert ([sol.ie, sol.xe, sol.ye],
%!         [2.0, 2.496110, -0.830550, -2.677589], .5e-1);
%!test  # Events option, five output arguments
%! warning ("off", "integrate_adaptive:unexpected_termination", "local");
%! opt = odeset ("Events", @fevn, "NormControl", "on");
%! [t, y, vxe, ye, vie] = ode23 (@fpol, [0 10], [2 0], opt);
%! assert ([vie, vxe, ye], [2.0, 2.496110, -0.830550, -2.677589], 1e-1);
%!test  # Mass option as function
%! opt = odeset ("Mass", @fmas);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as matrix
%! opt = odeset ("Mass", eye (2,2));
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as sparse matrix
%! opt = odeset ("Mass", sparse (eye (2,2)));
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as function and sparse matrix
%! opt = odeset ("Mass", @fmsa);
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);
%!test  # Mass option as function and MStateDependence
%! opt = odeset ("Mass", @fmas, "MStateDependence", "strong");
%! sol = ode23 (@fpol, [0 2], [2 0], opt);
%! assert ([sol.x(end); sol.y(:,end)], [2; fref'], 1e-3);

## Note: The following options have no effect on this solver
##       therefore it makes no sense to test them here:
##
## "BDF"
## "InitialSlope"
## "JPattern"
## "Jacobian"
## "MassSingular"
## "MaxOrder"
## "MvPattern"
## "Vectorized"

%!test # Check that imaginary part of solution does not get inverted
%! sol = ode23 (@(x,y) 1, [0 1], 1i);
%! assert (imag (sol.y), ones (size (sol.y)))
%! [x, y] = ode23 (@(x,y) 1, [0 1], 1i);
%! assert (imag (y), ones (size (y)))

## Test input validation
%!error ode23 ()
%!error ode23 (1)
%!error ode23 (1,2)
%!error <TRANGE must be a numeric> ode23 (@fpol, {[0 25]}, [3 15 1])
%!error <TRANGE must be a .* vector> ode23 (@fpol, [0 25; 25 0], [3 15 1])
%!error <TRANGE must contain at least 2 elements> ode23 (@fpol, [1], [3 15 1])
%!error <invalid time span>  ode23 (@fpol, [1 1], [3 15 1])
%!error <INIT must be a numeric> ode23 (@fpol, [0 25], {[3 15 1]})
%!error <INIT must be a .* vector> ode23 (@fpol, [0 25], [3 15 1; 3 15 1])
%!error <FUN must be a valid function handle> ode23 (1, [0 25], [3 15 1])