view scripts/statistics/movmin.m @ 27918:b442ec6dda5c

use centralized file for copyright info for individual contributors * COPYRIGHT.md: New file. * In most other files, use "Copyright (C) YYYY-YYYY The Octave Project Developers" instead of tracking individual names in separate source files. The motivation is to reduce the effort required to update the notices each year. Until now, the Octave source files contained copyright notices that list individual contributors. I adopted these file-scope copyright notices because that is what everyone was doing 30 years ago in the days before distributed version control systems. But now, with many contributors and modern version control systems, having these file-scope copyright notices causes trouble when we update copyright years or refactor code. Over time, the file-scope copyright notices may become outdated as new contributions are made or code is moved from one file to another. Sometimes people contribute significant patches but do not add a line claiming copyright. Other times, people add a copyright notice for their contribution but then a later refactoring moves part or all of their contribution to another file and the notice is not moved with the code. As a practical matter, moving such notices is difficult -- determining what parts are due to a particular contributor requires a time-consuming search through the project history. Even managing the yearly update of copyright years is problematic. We have some contributors who are no longer living. Should we update the copyright dates for their contributions when we release new versions? Probably not, but we do still want to claim copyright for the project as a whole. To minimize the difficulty of maintaining the copyright notices, I would like to change Octave's sources to use what is described here: https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html in the section "Maintaining centralized copyright notices": The centralized notice approach consolidates all copyright notices in a single location, usually a top-level file. This file should contain all of the copyright notices provided project contributors, unless the contribution was clearly insignificant. It may also credit -- without a copyright notice -- anyone who helped with the project but did not contribute code or other copyrighted material. This approach captures less information about contributions within individual files, recognizing that the DVCS is better equipped to record those details. As we mentioned before, it does have one disadvantage as compared to the file-scope approach: if a single file is separated from the distribution, the recipient won't see the contributors' copyright notices. But this can be easily remedied by including a single copyright notice in each file's header, pointing to the top-level file: Copyright YYYY-YYYY The Octave Project Developers See the COPYRIGHT file at the top-level directory of this distribution or at https://octave.org/COPYRIGHT.html. followed by the usual GPL copyright statement. For more background, see the discussion here: https://lists.gnu.org/archive/html/octave-maintainers/2020-01/msg00009.html Most files in the following directories have been skipped intentinally in this changeset: doc libgui/qterminal liboctave/external m4
author John W. Eaton <jwe@octave.org>
date Mon, 06 Jan 2020 15:38:17 -0500
parents 51c2e46e9a36
children 1891570abac8
line wrap: on
line source

## Copyright (C) 2018-2019 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this distribution
## or <https://octave.org/COPYRIGHT.html/>.
##
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {@var{y} =} movmin (@var{x}, @var{wlen})
## @deftypefnx {} {@var{y} =} movmin (@var{x}, [@var{na}, @var{nb}])
## @deftypefnx {} {@var{y} =} movmin (@dots{}, @var{dim})
## @deftypefnx {} {@var{y} =} movmin (@dots{}, "@var{nancond}")
## @deftypefnx {} {@var{y} =} movmin (@dots{}, @var{property}, @var{value})
## Calculate the moving minimum over a sliding window of length @var{wlen} on
## data @var{x}.
##
## If @var{wlen} is a scalar, the function @code{min} is applied to a
## moving window of length @var{wlen}.  When @var{wlen} is an odd number the
## window is symmetric and includes @w{@code{(@var{wlen} - 1) / 2}} elements on
## either side of the central element.  For example, when calculating the
## output at index 5 with a window length of 3, @code{movmin} uses data
## elements @w{@code{[4, 5, 6]}}.  If @var{wlen} is an even number, the window
## is asymmetric and has @w{@code{@var{wlen}/2}} elements to the left of the
## central element and @w{@code{@var{wlen}/2 - 1}} elements to the right of the
## central element.  For example, when calculating the output at index 5 with a
## window length of 4, @code{movmin} uses data elements
## @w{@code{[3, 4, 5, 6]}}.
##
## If @var{wlen} is an array with two elements @w{@code{[@var{nb}, @var{na}]}},
## the function is applied to a moving window @code{-@var{nb}:@var{na}}.  This
## window includes @var{nb} number of elements @emph{before} the current
## element and @var{na} number of elements @emph{after} the current element.
## The current element is always included.  For example, given
## @w{@code{@var{wlen} = [3, 0]}}, the data used to calculate index 5 is
## @w{@code{[2, 3, 4, 5]}}.
##
## If the optional argument @var{dim} is given, operate along this dimension.
##
## The optional string argument @qcode{"@var{nancond}"} controls whether
## @code{NaN} and @code{NA} values should be included (@qcode{"includenan"}),
## or excluded (@qcode{"omitnan"}), from the data passed to @code{min}.  The
## default is @qcode{"includenan"}.  Caution: the @qcode{"omitnan"} option is
## not yet implemented.
##
## The calculation can be controlled by specifying @var{property}/@var{value}
## pairs.  Valid properties are
##
## @table @asis
##
## @item @qcode{"Endpoints"}
##
## This property controls how results are calculated at the boundaries
## (@w{endpoints}) of the window.  Possible values are:
##
## @table @asis
## @item @qcode{"shrink"}  (default)
## The window is truncated at the beginning and end of the array to exclude
## elements for which there is no source data.  For example, with a window of
## length 3, @code{@var{y}(1) = min (@var{x}(1:2))}, and
## @code{@var{y}(end) = min (@var{x}(end-1:end))}.
##
## @item @qcode{"discard"}
## Any @var{y} values that use a window extending beyond the original
## data array are deleted.  For example, with a 10-element data vector and a
## window of length 3, the output will contain only 8 elements.  The first
## element would require calculating the function over indices
## @w{@code{[0, 1, 2]}} and is therefore discarded.  The last element would
## require calculating the function over indices @w{@code{[9, 10, 11]}} and is
## therefore discarded.
##
## @item @qcode{"fill"}
## Any window elements outside the data array are replaced by @code{NaN}.  For
## example, with a window of length 3,
## @code{@var{y}(1) = min ([NaN, @var{x}(1:2)])}, and
## @code{@var{y}(end) = min ([@var{x}(end-1:end), NaN])}.
## This option usually results in @var{y} having @code{NaN} values at the
## boundaries, although it is influenced by how @code{min} handles @code{NaN},
## and also by the property @qcode{"nancond"}.
##
## @item @var{user_value}
## Any window elements outside the data array are replaced by the specified
## value @var{user_value} which must be a numeric scalar.  For example, with a
## window of length 3,
## @code{@var{y}(1) = min ([@var{user_value}, @var{x}(1:2)])}, and
## @code{@var{y}(end) = min ([@var{x}(end-1:end), @var{user_value}])}.
## A common choice for @var{user_value} is 0.
##
## @item @qcode{"same"}
## Any window elements outside the data array are replaced by the value of
## @var{x} at the boundary.  For example, with a window of length 3,
## @code{@var{y}(1) = min ([@var{x}(1), @var{x}(1:2)])}, and
## @code{@var{y}(end) = min ([@var{x}(end-1:end), @var{x}(end)])}.
##
## @item @qcode{"periodic"}
## The window is wrapped so that any missing data elements are taken from
## the other side of the data.  For example, with a window of length 3,
## @code{@var{y}(1) = min ([@var{x}(end), @var{x}(1:2)])}, and
## @code{@var{y}(end) = min ([@var{x}(end-1:end), @var{x}(1)])}.
##
## @end table
##
## @item @qcode{"SamplePoints"}
## Caution: This option is not yet implemented.
##
## @end table
##
## Programming Note: This function is a wrapper which calls @code{movfun}.
## For additional options and documentation, @pxref{XREFmovfun,,movfun}.
##
## @seealso{movfun, movslice, movmad, movmax, movmean, movmedian, movprod, movstd, movsum, movvar}
## @end deftypefn

function y = movmin (x, wlen, varargin)

  if (nargin < 2)
    print_usage ();
  endif

  y = movfun (@min, x, wlen, "Endpoints", Inf,
              __parse_movargs__ ("movmin", varargin{:}){:});

endfunction


## FIXME: Need functional BIST tests
# test for bug #55241
%!assert ([1; (1:9).'], movmin ((1:10).', 3))

## Test input validation
%!error movmin ()
%!error movmin (1)