view liboctave/array/Array.h @ 22323:bac0d6f07a3e

maint: Update copyright notices for 2016.
author John W. Eaton <jwe@octave.org>
date Wed, 17 Aug 2016 01:05:19 -0400
parents 3bb1dc8b723e
children 4caa7b28d183
line wrap: on
line source

// Template array classes
/*

Copyright (C) 1993-2016 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if ! defined (octave_Array_h)
#define octave_Array_h 1

#include "octave-config.h"

#include <cassert>
#include <cstddef>

#include <algorithm>
#include <iosfwd>

#include "dim-vector.h"
#include "idx-vector.h"
#include "lo-error.h"
#include "lo-traits.h"
#include "lo-utils.h"
#include "oct-sort.h"
#include "quit.h"
#include "oct-refcount.h"

//! N Dimensional Array with copy-on-write semantics.
/*!
    The Array class is at the root of Octave.  It provides a container
    with an arbitrary number of dimensions.  The operator () provides
    access to individual elements via subscript and linear indexing.
    Indexing starts at 0.  Arrays are column-major order as in Fortran.

    @code{.cc}
    // 3 D Array with 10 rows, 20 columns, and 5 pages, filled with 7.0
    Array<double> A Array<double (dim_vector (10, 20, 5), 7.0);

    // set value for row 0, column 10, and page 3
    A(0, 10, 3) = 2.5;

    // get value for row 1, column 2, and page 0
    double v = A(1, 2, 0);

    // get value for 25th element (row 4, column 3, page 1)
    double v = A(24);
    @endcode

    ## Notes on STL compatibility

    ### size() and length()

    To access the total number of elements in an Array, use numel()
    which is short for number of elements and is equivalent to the
    Octave function with same name.

    @code{.cc}
    Array<int> A (dim_vector (10, 20, 4), 1);

    octave_idx_type n = A.numel (); // returns 800 (10x20x4)

    octave_idx_type nr = A.size (0); // returns 10 (number of rows/dimension 0)
    octave_idx_type nc = A.size (1); // returns 20 (number of columns)
    octave_idx_type nc = A.size (2); // returns 4 (size of dimension 3)
    octave_idx_type l6 = A.size (6); // returns 1 (implicit singleton dimension)

    // Alternatively, get a dim_vector which represents the dimensions.
    dim_vector dims = A.dims ();
    @endcode

    The methods size() and length() as they exist in the STL cause
    confusion in the context of a N dimensional array.

    The size() of an array is the length of all dimensions.  In Octave,
    the size() function returns a row vector with the length of each
    dimension, or the size of a specific dimension.  Only the latter is
    present in liboctave.

    Since there is more than 1 dimension, length() would not make sense
    without expliciting which dimension.  If the function existed, which
    length should it return?  Octave length() function returns the length
    of the longest dimension which is an odd definition, only useful for
    vectors and square matrices.  The alternatives numel(), rows(),
    columns(), and size(d) are more explict and recommended.

    ### size_type

    Array::size_type is `octave_idx_type` which is a typedef for `int`
    or `long int`, depending whether Octave was configured for 64-bit
    indexing.

    This is a signed integer which may cause problems when mixed with
    STL containers.  The reason is that Octave interacts with Fortran
    routines, providing an interface many Fortran numeric libraries.

    ## Subclasses

    The following subclasses specializations, will be of most use:
      - Matrix: Array<double> with only 2 dimensions
      - ComplexMatrix: Array<std::complex<double>> with only 2 dimensions
      - boolNDArray: N dimensional Array<bool>
      - ColumnVector: Array<double> with 1 column
      - string_vector: Array<std::string> with 1 column
      - Cell: Array<octave_value>, equivalent to an Octave cell.

*/
template <typename T>
class
Array
{
protected:

  //! The real representation of all arrays.
  class ArrayRep
  {
  public:

    T *data;
    octave_idx_type len;
    octave_refcount<int> count;

    ArrayRep (T *d, octave_idx_type l)
      : data (new T [l]), len (l), count (1)
    {
      std::copy (d, d+l, data);
    }

    template <typename U>
    ArrayRep (U *d, octave_idx_type l)
      : data (new T [l]), len (l), count (1)
    {
      std::copy (d, d+l, data);
    }

    ArrayRep (void) : data (0), len (0), count (1) { }

    explicit ArrayRep (octave_idx_type n)
      : data (new T [n]), len (n), count (1) { }

    explicit ArrayRep (octave_idx_type n, const T& val)
      : data (new T [n]), len (n), count (1)
    {
      std::fill_n (data, n, val);
    }

    ArrayRep (const ArrayRep& a)
      : data (new T [a.len]), len (a.len), count (1)
    {
      std::copy (a.data, a.data + a.len, data);
    }

    ~ArrayRep (void) { delete [] data; }

    octave_idx_type numel (void) const { return len; }

  private:

    // No assignment!

    ArrayRep& operator = (const ArrayRep& a);
  };

  //--------------------------------------------------------------------

public:

  void make_unique (void)
  {
    if (rep->count > 1)
      {
        ArrayRep *r = new ArrayRep (slice_data, slice_len);

        if (--rep->count == 0)
          delete rep;

        rep = r;
        slice_data = rep->data;
      }
  }

  typedef T element_type;

  typedef T value_type;

  //! Used for operator(), and returned by numel() and size()
  //! (beware: signed integer)
  typedef octave_idx_type size_type;

  typedef typename ref_param<T>::type crefT;

  typedef bool (*compare_fcn_type) (typename ref_param<T>::type,
                                    typename ref_param<T>::type);

protected:

  dim_vector dimensions;

  typename Array<T>::ArrayRep *rep;

  // Rationale:
  // slice_data is a pointer to rep->data, denoting together with slice_len the
  // actual portion of the data referenced by this Array<T> object.  This
  // allows to make shallow copies not only of a whole array, but also of
  // contiguous subranges.  Every time rep is directly manipulated, slice_data
  // and slice_len need to be properly updated.

  T* slice_data;
  octave_idx_type slice_len;

  //! slice constructor
  Array (const Array<T>& a, const dim_vector& dv,
         octave_idx_type l, octave_idx_type u)
    : dimensions (dv), rep(a.rep), slice_data (a.slice_data+l), slice_len (u-l)
  {
    rep->count++;
    dimensions.chop_trailing_singletons ();
  }

private:

  static typename Array<T>::ArrayRep *nil_rep (void);

protected:

  //! For jit support
  Array (T *sdata, octave_idx_type slen, octave_idx_type *adims, void *arep)
    : dimensions (adims),
      rep (reinterpret_cast<typename Array<T>::ArrayRep *> (arep)),
      slice_data (sdata), slice_len (slen) { }

public:

  //! Empty ctor (0 by 0).
  Array (void)
    : dimensions (), rep (nil_rep ()), slice_data (rep->data),
      slice_len (rep->len)
  {
    rep->count++;
  }

  //! nD uninitialized ctor.
  explicit Array (const dim_vector& dv)
    : dimensions (dv),
      rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
      slice_data (rep->data), slice_len (rep->len)
  {
    dimensions.chop_trailing_singletons ();
  }

  //! nD initialized ctor.
  explicit Array (const dim_vector& dv, const T& val)
    : dimensions (dv),
      rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
      slice_data (rep->data), slice_len (rep->len)
  {
    fill (val);
    dimensions.chop_trailing_singletons ();
  }

  //! Reshape constructor.
  Array (const Array<T>& a, const dim_vector& dv);

  //! Constructor from standard library sequence containers.
  template<template <typename...> class Container>
  Array (const Container<T>& a, const dim_vector& dv);

  //! Type conversion case.
  template <typename U>
  Array (const Array<U>& a)
    : dimensions (a.dims ()),
      rep (new typename Array<T>::ArrayRep (a.data (), a.numel ())),
      slice_data (rep->data), slice_len (rep->len)
  { }

  //! No type conversion case.
  Array (const Array<T>& a)
    : dimensions (a.dimensions), rep (a.rep), slice_data (a.slice_data),
      slice_len (a.slice_len)
  {
    rep->count++;
  }

public:

  virtual ~Array (void)
  {
    if (--rep->count == 0)
      delete rep;
  }

  Array<T>& operator = (const Array<T>& a)
  {
    if (this != &a)
      {
        if (--rep->count == 0)
          delete rep;

        rep = a.rep;
        rep->count++;

        dimensions = a.dimensions;
        slice_data = a.slice_data;
        slice_len = a.slice_len;
      }

    return *this;
  }

  void fill (const T& val);

  void clear (void);
  void clear (const dim_vector& dv);

  void clear (octave_idx_type r, octave_idx_type c)
  { clear (dim_vector (r, c)); }

  // Number of elements in the array.  These are all synonyms.
  //@{
  //! Number of elements in the array.
  //! Synonymous with numel().
  //! @note This method is deprecated in favour of numel().
  OCTAVE_DEPRECATED ("use 'numel' instead")
  octave_idx_type capacity (void) const { return numel (); }

  //! Number of elements in the array.
  /*! Synonymous with numel().
      @note This method is deprecated in favour of numel().

      @note
      This is @em not the same as @c %length() at the Octave interpreter.
      At the Octave interpreter, the function @c %length() returns the
      length of the greatest dimension.  This method returns the total
      number of elements.
   */
  OCTAVE_DEPRECATED ("use 'numel' instead")
  octave_idx_type length (void) const { return numel (); }

  //! Number of elements in the array.
  //! Synonymous with numel().
  //! @note This method is deprecated in favour of numel().
  OCTAVE_DEPRECATED ("use 'numel' instead")
  octave_idx_type nelem (void) const { return numel (); }

  //! Number of elements in the array.
  octave_idx_type numel (void) const { return slice_len; }
  //@}

  //! Return the array as a column vector.
  Array<T> as_column (void) const
  {
    Array<T> retval (*this);
    if (dimensions.ndims () != 2 || dimensions(1) != 1)
      retval.dimensions = dim_vector (numel (), 1);

    return retval;
  }

  //! Return the array as a row vector.
  Array<T> as_row (void) const
  {
    Array<T> retval (*this);
    if (dimensions.ndims () != 2 || dimensions(0) != 1)
      retval.dimensions = dim_vector (1, numel ());

    return retval;
  }

  //! Return the array as a matrix.
  Array<T> as_matrix (void) const
  {
    Array<T> retval (*this);
    if (dimensions.ndims () != 2)
      retval.dimensions = dimensions.redim (2);

    return retval;
  }

  //! @name First dimension
  //!
  //! Get the first dimension of the array (number of rows)
  //@{
  octave_idx_type dim1 (void) const { return dimensions(0); }
  octave_idx_type rows (void) const { return dim1 (); }
  //@}

  //! @name Second dimension
  //!
  //! Get the second dimension of the array (number of columns)
  //@{
  octave_idx_type dim2 (void) const { return dimensions(1); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }
  //@}

  //! @name Third dimension
  //!
  //! Get the third dimension of the array (number of pages)
  //@{
  octave_idx_type dim3 (void) const { return dimensions(2); }
  octave_idx_type pages (void) const { return dim3 (); }
  //@}

  //! Size of the specified dimension.
  /*!
      Dimensions beyond the Array number of dimensions return 1 as
      those are implicit singleton dimensions.

      Equivalent to Octave's `size (A, DIM)`
  */
  size_type size (const size_type d) const
  {
    // Should we throw for negative values?
    // Should >= ndims () be handled by dim_vector operator() instead ?
    return d >= ndims () ? 1 : dimensions(d);
  }

  size_t byte_size (void) const
  { return static_cast<size_t> (numel ()) * sizeof (T); }

  //! Return a const-reference so that dims ()(i) works efficiently.
  const dim_vector& dims (void) const { return dimensions; }

  //! Chop off leading singleton dimensions
  Array<T> squeeze (void) const;

  octave_idx_type compute_index (octave_idx_type i, octave_idx_type j) const;
  octave_idx_type compute_index (octave_idx_type i, octave_idx_type j,
                                 octave_idx_type k) const;
  octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;

  octave_idx_type compute_index_unchecked (const Array<octave_idx_type>& ra_idx)
  const
  { return dimensions.compute_index (ra_idx.data (), ra_idx.numel ()); }

  // No checking, even for multiple references, ever.

  T& xelem (octave_idx_type n) { return slice_data[n]; }
  crefT xelem (octave_idx_type n) const { return slice_data[n]; }

  T& xelem (octave_idx_type i, octave_idx_type j)
  { return xelem (dim1 ()*j+i); }
  crefT xelem (octave_idx_type i, octave_idx_type j) const
  { return xelem (dim1 ()*j+i); }

  T& xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return xelem (i, dim2 ()*k+j); }
  crefT xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
  { return xelem (i, dim2 ()*k+j); }

  T& xelem (const Array<octave_idx_type>& ra_idx)
  { return xelem (compute_index_unchecked (ra_idx)); }

  crefT xelem (const Array<octave_idx_type>& ra_idx) const
  { return xelem (compute_index_unchecked (ra_idx)); }

  // FIXME: would be nice to fix this so that we don't unnecessarily force
  //        a copy, but that is not so easy, and I see no clean way to do it.

  T& checkelem (octave_idx_type n);
  T& checkelem (octave_idx_type i, octave_idx_type j);
  T& checkelem (octave_idx_type i, octave_idx_type j, octave_idx_type k);
  T& checkelem (const Array<octave_idx_type>& ra_idx);

  T& elem (octave_idx_type n)
  {
    make_unique ();
    return xelem (n);
  }

  T& elem (octave_idx_type i, octave_idx_type j) { return elem (dim1 ()*j+i); }

  T& elem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return elem (i, dim2 ()*k+j); }

  T& elem (const Array<octave_idx_type>& ra_idx)
  { return Array<T>::elem (compute_index_unchecked (ra_idx)); }

#if defined (OCTAVE_ENABLE_BOUNDS_CHECK)
  T& operator () (octave_idx_type n) { return checkelem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j)
  { return checkelem (i, j); }
  T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return checkelem (i, j, k); }
  T& operator () (const Array<octave_idx_type>& ra_idx)
  { return checkelem (ra_idx); }
#else
  T& operator () (octave_idx_type n) { return elem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
  T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return elem (i, j, k); }
  T& operator () (const Array<octave_idx_type>& ra_idx)
  { return elem (ra_idx); }
#endif

  crefT checkelem (octave_idx_type n) const;
  crefT checkelem (octave_idx_type i, octave_idx_type j) const;
  crefT checkelem (octave_idx_type i, octave_idx_type j,
                   octave_idx_type k) const;
  crefT checkelem (const Array<octave_idx_type>& ra_idx) const;

  crefT elem (octave_idx_type n) const { return xelem (n); }

  crefT elem (octave_idx_type i, octave_idx_type j) const
  { return xelem (i, j); }

  crefT elem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
  { return xelem (i, j, k); }

  crefT elem (const Array<octave_idx_type>& ra_idx) const
  { return Array<T>::xelem (compute_index_unchecked (ra_idx)); }

#if defined (OCTAVE_ENABLE_BOUNDS_CHECK)
  crefT operator () (octave_idx_type n) const { return checkelem (n); }
  crefT operator () (octave_idx_type i, octave_idx_type j) const
  { return checkelem (i, j); }
  crefT operator () (octave_idx_type i, octave_idx_type j,
                     octave_idx_type k) const
  { return checkelem (i, j, k); }
  crefT operator () (const Array<octave_idx_type>& ra_idx) const
  { return checkelem (ra_idx); }
#else
  crefT operator () (octave_idx_type n) const { return elem (n); }
  crefT operator () (octave_idx_type i, octave_idx_type j) const
  { return elem (i, j); }
  crefT operator () (octave_idx_type i, octave_idx_type j,
                     octave_idx_type k) const
  { return elem (i, j, k); }
  crefT operator () (const Array<octave_idx_type>& ra_idx) const
  { return elem (ra_idx); }
#endif

  // Fast extractors.  All of these produce shallow copies.
  // Warning: none of these do check bounds, unless
  // OCTAVE_ENABLE_BOUNDS_CHECK is defined!

  //! Extract column: A(:,k+1).
  Array<T> column (octave_idx_type k) const;
  //! Extract page: A(:,:,k+1).
  Array<T> page (octave_idx_type k) const;

  //! Extract a slice from this array as a column vector: A(:)(lo+1:up).
  //! Must be 0 <= lo && up <= numel.  May be up < lo.
  Array<T> linear_slice (octave_idx_type lo, octave_idx_type up) const;

  Array<T> reshape (octave_idx_type nr, octave_idx_type nc) const
  { return Array<T> (*this, dim_vector (nr, nc)); }

  Array<T> reshape (const dim_vector& new_dims) const
  { return Array<T> (*this, new_dims); }

  Array<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;
  Array<T> ipermute (const Array<octave_idx_type>& vec) const
  { return permute (vec, true); }

  bool is_square (void) const { return (dim1 () == dim2 ()); }

  bool is_empty (void) const { return numel () == 0; }

  bool is_vector (void) const { return dimensions.is_vector (); }

  Array<T> transpose (void) const;
  Array<T> hermitian (T (*fcn) (const T&) = 0) const;

  const T *data (void) const { return slice_data; }

  const T *fortran_vec (void) const { return data (); }

  T *fortran_vec (void);

  bool is_shared (void) { return rep->count > 1; }

  int ndims (void) const { return dimensions.ndims (); }

  //@{
  //! Indexing without resizing.
  Array<T> index (const idx_vector& i) const;

  Array<T> index (const idx_vector& i, const idx_vector& j) const;

  Array<T> index (const Array<idx_vector>& ia) const;
  //@}

  virtual T resize_fill_value (void) const;

  //@{
  //! Resizing (with fill).
  void resize2 (octave_idx_type nr, octave_idx_type nc, const T& rfv);
  void resize2 (octave_idx_type nr, octave_idx_type nc)
  {
    resize2 (nr, nc, resize_fill_value ());
  }

  void resize1 (octave_idx_type n, const T& rfv);
  void resize1 (octave_idx_type n) { resize1 (n, resize_fill_value ()); }

  void resize (const dim_vector& dv, const T& rfv);
  void resize (const dim_vector& dv) { resize (dv, resize_fill_value ()); }
  //@}

  //@{
  //! Indexing with possible resizing and fill

  // FIXME: this is really a corner case, that should better be
  // handled directly in liboctinterp.

  Array<T> index (const idx_vector& i, bool resize_ok, const T& rfv) const;
  Array<T> index (const idx_vector& i, bool resize_ok) const
  {
    return index (i, resize_ok, resize_fill_value ());
  }

  Array<T> index (const idx_vector& i, const idx_vector& j, bool resize_ok,
                  const T& rfv) const;
  Array<T> index (const idx_vector& i, const idx_vector& j,
                  bool resize_ok) const
  {
    return index (i, j, resize_ok, resize_fill_value ());
  }

  Array<T> index (const Array<idx_vector>& ia, bool resize_ok,
                  const T& rfv) const;
  Array<T> index (const Array<idx_vector>& ia, bool resize_ok) const
  {
    return index (ia, resize_ok, resize_fill_value ());
  }
  //@}

  //@{
  //! Indexed assignment (always with resize & fill).
  void assign (const idx_vector& i, const Array<T>& rhs, const T& rfv);
  void assign (const idx_vector& i, const Array<T>& rhs)
  {
    assign (i, rhs, resize_fill_value ());
  }

  void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs,
               const T& rfv);
  void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs)
  {
    assign (i, j, rhs, resize_fill_value ());
  }

  void assign (const Array<idx_vector>& ia, const Array<T>& rhs, const T& rfv);
  void assign (const Array<idx_vector>& ia, const Array<T>& rhs)
  {
    assign (ia, rhs, resize_fill_value ());
  }
  //@}

  //@{
  //! Deleting elements.

  //! A(I) = [] (with a single subscript)
  void delete_elements (const idx_vector& i);

  //! A(:,...,I,...,:) = [] (>= 2 subscripts, one of them is non-colon)
  void delete_elements (int dim, const idx_vector& i);

  //! Dispatcher to the above two.
  void delete_elements (const Array<idx_vector>& ia);
  //@}

  //! Insert an array into another at a specified position.  If
  //! size (a) is [d1 d2 ... dN] and idx is [i1 i2 ... iN], this
  //! method is equivalent to x(i1:i1+d1-1, i2:i2+d2-1, ... ,
  //! iN:iN+dN-1) = a.
  Array<T>& insert (const Array<T>& a, const Array<octave_idx_type>& idx);

  //! This is just a special case for idx = [r c 0 ...]
  Array<T>& insert (const Array<T>& a, octave_idx_type r, octave_idx_type c);

  void maybe_economize (void)
  {
    if (rep->count == 1 && slice_len != rep->len)
      {
        ArrayRep *new_rep = new ArrayRep (slice_data, slice_len);
        delete rep;
        rep = new_rep;
        slice_data = rep->data;
      }
  }

  void print_info (std::ostream& os, const std::string& prefix) const;

  //! Give a pointer to the data in mex format.  Unsafe.  This function
  //! exists to support the MEX interface.  You should not use it
  //! anywhere else.
  void *mex_get_data (void) const { return const_cast<T *> (data ()); }

  Array<T> sort (int dim = 0, sortmode mode = ASCENDING) const;
  Array<T> sort (Array<octave_idx_type> &sidx, int dim = 0,
                 sortmode mode = ASCENDING) const;

  //! Ordering is auto-detected or can be specified.
  sortmode is_sorted (sortmode mode = UNSORTED) const;

  //! Sort by rows returns only indices.
  Array<octave_idx_type> sort_rows_idx (sortmode mode = ASCENDING) const;

  //! Ordering is auto-detected or can be specified.
  sortmode is_sorted_rows (sortmode mode = UNSORTED) const;

  //! @brief Do a binary lookup in a sorted array.  Must not contain NaNs.
  //! Mode can be specified or is auto-detected by comparing 1st and last element.
  octave_idx_type lookup (const T& value, sortmode mode = UNSORTED) const;

  //! Ditto, but for an array of values, specializing on the case when values
  //! are sorted.  NaNs get the value N.
  Array<octave_idx_type> lookup (const Array<T>& values,
                                 sortmode mode = UNSORTED) const;

  //! Count nonzero elements.
  octave_idx_type nnz (void) const;

  //! Find indices of (at most n) nonzero elements.  If n is specified,
  //! backward specifies search from backward.
  Array<octave_idx_type> find (octave_idx_type n = -1,
                               bool backward = false) const;

  //! Returns the n-th element in increasing order, using the same
  //! ordering as used for sort.  n can either be a scalar index or a
  //! contiguous range.
  Array<T> nth_element (const idx_vector& n, int dim = 0) const;

  //! Get the kth super or subdiagonal.  The zeroth diagonal is the
  //! ordinary diagonal.
  Array<T> diag (octave_idx_type k = 0) const;

  Array<T> diag (octave_idx_type m, octave_idx_type n) const;

  //! Concatenation along a specified (0-based) dimension, equivalent
  //! to cat().  dim = -1 corresponds to dim = 0 and dim = -2
  //! corresponds to dim = 1, but apply the looser matching rules of
  //! vertcat/horzcat.
  static Array<T>
  cat (int dim, octave_idx_type n, const Array<T> *array_list);

  //! Apply function fcn to each element of the Array<T>.  This function
  //! is optimized with a manually unrolled loop.
  template <typename U, typename F>
  Array<U>
  map (F fcn) const
  {
    octave_idx_type len = numel ();

    const T *m = data ();

    Array<U> result (dims ());
    U *p = result.fortran_vec ();

    octave_idx_type i;
    for (i = 0; i < len - 3; i += 4)
      {
        octave_quit ();

        p[i] = fcn (m[i]);
        p[i+1] = fcn (m[i+1]);
        p[i+2] = fcn (m[i+2]);
        p[i+3] = fcn (m[i+3]);
      }

    octave_quit ();

    for (; i < len; i++)
      p[i] = fcn (m[i]);

    return result;
  }

  //@{
  //! Overloads for function references.
  template <typename U>
  Array<U>
  map (U (&fcn) (T)) const
  { return map<U, U (&) (T)> (fcn); }

  template <typename U>
  Array<U>
  map (U (&fcn) (const T&)) const
  { return map<U, U (&) (const T&)> (fcn); }
  //@}

  //! Generic any/all test functionality with arbitrary predicate.
  template <typename F, bool zero>
  bool test (F fcn) const
  {
    return any_all_test<F, T, zero> (fcn, data (), numel ());
  }

  //@{
  //! Simpler calls.
  template <typename F>
  bool test_any (F fcn) const
  { return test<F, false> (fcn); }

  template <typename F>
  bool test_all (F fcn) const
  { return test<F, true> (fcn); }
  //@}

  //@{
  //! Overloads for function references.
  bool test_any (bool (&fcn) (T)) const
  { return test<bool (&) (T), false> (fcn); }

  bool test_any (bool (&fcn) (const T&)) const
  { return test<bool (&) (const T&), false> (fcn); }

  bool test_all (bool (&fcn) (T)) const
  { return test<bool (&) (T), true> (fcn); }

  bool test_all (bool (&fcn) (const T&)) const
  { return test<bool (&) (const T&), true> (fcn); }
  //@}

  template <typename U> friend class Array;

  //! Returns true if this->dims () == dv, and if so, replaces this->dimensions
  //! by a shallow copy of dv.  This is useful for maintaining several arrays
  //! with supposedly equal dimensions (e.g. structs in the interpreter).
  bool optimize_dimensions (const dim_vector& dv);

  //@{
  //! WARNING: Only call these functions from jit

  int *jit_ref_count (void) { return rep->count.get (); }

  T *jit_slice_data (void) const { return slice_data; }

  octave_idx_type *jit_dimensions (void) const { return dimensions.to_jit (); }

  void *jit_array_rep (void) const { return rep; }
  //@}

private:
  static void instantiation_guard ();
};

// We use a variadic template for template template parameter so that
// we don't have to specify all the template parameters and limit this
// to Container<T>. http://stackoverflow.com/a/20499809/1609556
template<typename T>
template<template <typename...> class Container>
Array<T>::Array (const Container<T>& a, const dim_vector& dv)
  : dimensions (dv), rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
    slice_data (rep->data), slice_len (rep->len)
{
  if (dimensions.safe_numel () != octave_idx_type (a.size ()))
    {
      std::string new_dims_str = dimensions.str ();

      (*current_liboctave_error_handler)
        ("reshape: can't reshape %i elements into %s array",
         a.size (), new_dims_str.c_str ());
    }

  octave_idx_type i = 0;
  for (const T& x : a)
    slice_data[i++] = x;

  dimensions.chop_trailing_singletons ();
}

//! This is a simple wrapper template that will subclass an Array<T>
//! type or any later type derived from it and override the default
//! non-const operator() to not check for the array's uniqueness.  It
//! is, however, the user's responsibility to ensure the array is
//! actually unaliased whenever elements are accessed.
template <typename ArrayClass>
class NoAlias : public ArrayClass
{
  typedef typename ArrayClass::element_type T;
public:
  NoAlias () : ArrayClass () { }

  // FIXME: this would be simpler once C++0x is available
  template <typename X>
    explicit NoAlias (X x) : ArrayClass (x) { }

  template <typename X, typename Y>
    explicit NoAlias (X x, Y y) : ArrayClass (x, y) { }

  template <typename X, typename Y, typename Z>
    explicit NoAlias (X x, Y y, Z z) : ArrayClass (x, y, z) { }

  T& operator () (octave_idx_type n)
  { return ArrayClass::xelem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j)
  { return ArrayClass::xelem (i, j); }
  T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return ArrayClass::xelem (i, j, k); }
  T& operator () (const Array<octave_idx_type>& ra_idx)
  { return ArrayClass::xelem (ra_idx); }
};

template <typename T>
std::ostream&
operator << (std::ostream& os, const Array<T>& a);

#endif