view scripts/general/quadv.m @ 21575:bc9aa534bc29

maint: Clean up BIST tests so they don't produce warnings. * data.cc (Fhorzcat): Temporarily disable "num-to-str" warning for BIST tests. * luinc.cc (__luinc__): Move BIST tests to luinc.m. * luinc.m: Add BIST tests for luinc. * regexp.cc (Fregexp): Temporarily disable "regexp-lookbehind-limit" for BIST tests. * sqrtm.cc (Fsqrtm): Temporarily disable "sqrtm:SingularMatrix" for BIST tests. * __eigs__.cc, __init_fltk__.cc, __init_gnuplot__.cc: Add 'assert (1)' BIST test to mark internal functions as tested. * ov-range.cc (Fallow_noninteger_range_as_index: Temporarily disable "deprecated-syntax" for BIST tests. * quadv.m: Temporarily disable "divide-by-zero" warning for BIST tests. * imfinfo.m: Temporarily disable "GraphicsMagic-Quantum-Depth" for BIST tests.
author Rik <rik@octave.org>
date Fri, 01 Apr 2016 13:56:09 -0700
parents 516bb87ea72e
children ffad2baa90f7
line wrap: on
line source

## Copyright (C) 2008-2015 David Bateman
## Copyright (C) 2012 Alexander Klein
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{q}, @var{nfun}] =} quadv (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Simpson's rule.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  @code{quadv} is a vectorized version of
## @code{quad} and the function defined by @var{f} must accept a scalar or
## vector as input and return a scalar, vector, or array as output.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Both
## limits must be finite.
##
## The optional argument @var{tol} defines the absolute tolerance used to stop
## the adaptation procedure.  The default value is 1e-6.
##
## The algorithm used by @code{quadv} involves recursively subdividing the
## integration interval and applying Simpson's rule on each subinterval.
## If @var{trace} is true then after computing each of these partial
## integrals display: (1) the total number of function evaluations,
## (2) the left end of the subinterval, (3) the length of the subinterval,
## (4) the approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}.
##
## The optional output @var{nfun} indicates the total number of function
## evaluations performed.
##
## Note: @code{quadv} is written in Octave's scripting language and can be
## used recursively in @code{dblquad} and @code{triplequad}, unlike the
## @code{quad} function.
## @seealso{quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad}
## @end deftypefn

function [q, nfun] = quadv (f, a, b, tol = [], trace = [], varargin)

  if (nargin < 3)
    print_usage ();
  endif

  if (isa (a, "single") || isa (b, "single"))
    eps = eps ("single");
  else
    eps = eps ("double");
  endif
  if (isempty (tol))
    tol = 1e-6;
  elseif (! isscalar (tol) || tol < 0)
    error ("quadv: TOL must be a scalar >=0");
  endif
  if (isempty (trace))
    trace = false;
  endif

  ## Split the interval into 3 abscissa, and apply a 3-point Simpson's rule
  c = (a + b) / 2;
  fa = feval (f, a, varargin{:});
  fc = feval (f, c, varargin{:});
  fb = feval (f, b, varargin{:});
  nfun = 3;

  ## If there are edge singularities, move edge point by eps*(b-a) as
  ## discussed in Shampine paper used to implement quadgk.
  if (any (isinf (fa(:))))
    fa = feval (f, a + eps * (b-a), varargin{:});
  endif
  if (any (isinf (fb(:))))
    fb = feval (f, b - eps * (b-a), varargin{:});
  endif

  h = (b - a);
  q = h / 6 * (fa + 4 * fc + fb);

  [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q, nfun, abs (h),
                                tol, trace, varargin{:});

  if (nfun > 10_000)
    warning ("quadv: maximum iteration count reached -- possible singular integral");
  elseif (any (! isfinite (q(:))))
    warning ("quadv: infinite or NaN function evaluations were returned");
  elseif (hmin < (b - a) * eps)
    warning ("quadv: minimum step size reached -- possible singular integral");
  endif

endfunction

function [q, nfun, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0, nfun, hmin,
                                       tol, trace, varargin)
  if (nfun > 10_000)
    q = q0;
  else
    d = (a + c) / 2;
    e = (c + b) / 2;
    fd = feval (f, d, varargin{:});
    fe = feval (f, e, varargin{:});
    nfun += 2;
    q1 = (c - a) / 6 * (fa + 4 * fd + fc);
    q2 = (b - c) / 6 * (fc + 4 * fe + fb);
    q = q1 + q2;

    if (abs (a - c) < hmin)
      hmin = abs (a - c);
    endif

    if (trace)
      disp ([nfun, a, b-a, q]);
    endif

    ## Force at least one adaptive step (nfun == 5 test).
    ## Not vectorizing q-q0 in the norm provides a more rigid criterion for
    ## matrix-valued functions.
    if (norm (q - q0, Inf) > tol || nfun == 5)
      [q1, nfun, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, nfun, hmin,
                                     tol, trace, varargin{:});
      [q2, nfun, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, nfun, hmin,
                                     tol, trace, varargin{:});
      q = q1 + q2;
    endif
  endif

endfunction


%!assert (quadv (@sin, 0, 2*pi), 0, 1e-5)
%!assert (quadv (@sin, 0, pi), 2, 1e-5)

## Test weak singularities at the edge
%!test
%! warning ("off", "Octave:divide-by-zero", "local");
%! assert (quadv (@(x) 1 ./ sqrt (x), 0, 1), 2, 1e-5);

## Test vector-valued functions
%!assert (quadv (@(x) [(sin (x)), (sin (2 * x))], 0, pi), [2, 0], 1e-5)

## Test matrix-valued functions
%!test
%! warning ("off", "Octave:divide-by-zero", "local");
%! assert (quadv (@(x) [ x, x, x; x, 1./sqrt(x), x; x, x, x ], 0, 1),
%!         [0.5, 0.5, 0.5; 0.5, 2, 0.5; 0.5, 0.5, 0.5], 1e-5);

## Test input validation
%!error quadv ()
%!error quadv (@sin)
%!error quadv (@sin,1)
%!error <TOL must be a scalar> quadv (@sin,0,1, ones (2,2))