view libinterp/corefcn/fft.cc @ 23581:c3075ae020e1

maint: Deprecate is_complex_type and replace with iscomplex. * ov.h (is_complex_type): Use OCTAVE_DEPRECATED macro around function. * ov.h (iscomplex): New function. * __ichol__.cc, __ilu__.cc, balance.cc, bsxfun.cc, cellfun.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, det.cc, dot.cc, fft.cc, fft2.cc, fftn.cc, filter.cc, find.cc, givens.cc, graphics.cc, gsvd.cc, hess.cc, hex2num.cc, inv.cc, kron.cc, lookup.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, lsode.cc, lu.cc, matrix_type.cc, mex.cc, mgorth.cc, ordschur.cc, pinv.cc, psi.cc, quad.cc, qz.cc, rcond.cc, schur.cc, sparse-xpow.cc, sparse.cc, sqrtm.cc, svd.cc, sylvester.cc, symtab.cc, typecast.cc, variables.cc, xnorm.cc, __eigs__.cc, amd.cc, ccolamd.cc, chol.cc, colamd.cc, qr.cc, symbfact.cc, ov-base.h, ov-complex.h, ov-cx-diag.h, ov-cx-mat.h, ov-cx-sparse.h, ov-flt-complex.h, ov-flt-cx-diag.h, ov-flt-cx-mat.h, jit-typeinfo.cc, pt-tm-const.cc: Replace instances of is_complex_type with iscomplex.
author Rik <rik@octave.org>
date Mon, 12 Jun 2017 21:18:23 -0700
parents 80c42f4cca13
children 0cc2011d800e
line wrap: on
line source

/*

Copyright (C) 1997-2017 David Bateman
Copyright (C) 1996-1997 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "utils.h"

#if defined (HAVE_FFTW)
#  define FFTSRC "@sc{fftw}"
#else
#  define FFTSRC "@sc{fftpack}"
#endif

static octave_value
do_fft (const octave_value_list& args, const char *fcn, int type)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    print_usage ();

  octave_value retval;
  octave_value arg = args(0);
  octave_idx_type n_points = -1;
  dim_vector dims = arg.dims ();
  int ndims = dims.ndims ();
  int dim = -1;

  if (nargin > 1)
    {
      if (! args(1).isempty ())
        {
          double dval = args(1).double_value ();
          if (octave::math::isnan (dval))
            error ("%s: number of points (N) cannot be NaN", fcn);

          n_points = octave::math::nint_big (dval);
          if (n_points < 0)
            error ("%s: number of points (N) must be greater than zero", fcn);
        }
    }

  if (nargin > 2)
    {
      double dval = args(2).double_value ();
      if (octave::math::isnan (dval))
        error ("%s: DIM cannot be NaN", fcn);
      else if (dval < 1 || dval > ndims)
        error ("%s: DIM must be a valid dimension along which to perform FFT",
               fcn);
      else
        // to be safe, cast it back to int since dim is an int
        dim = octave::math::nint (dval) - 1;
    }

  // FIXME: This seems strange and unnecessary (10/21/16).
  // How would you ever arrive at an octave_value object without correct dims?
  // We certainly don't make this check every other place in Octave.
  for (octave_idx_type i = 0; i < ndims; i++)
    if (dims(i) < 0)
      return retval;

  if (dim < 0)
    {
      dim = dims.first_non_singleton ();

      // And if the first argument is scalar?
      if (dim == ndims)
        dim = 1;
    }

  if (n_points < 0)
    n_points = dims(dim);
  else
    dims(dim) = n_points;

  if (n_points == 0 || dims.any_zero ())
    {
      if (arg.is_single_type ())
        return octave_value (FloatNDArray (dims));
      else
        return octave_value (NDArray (dims));
    }

  if (n_points == 1)
    {
      octave_value_list idx (ndims);
      for (octave_idx_type i = 0; i < ndims; i++)
        idx(i) = idx_vector::colon;
      idx(dim) = idx_vector (static_cast<octave_idx_type> (0));

      return arg.do_index_op (idx);
    }

  if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          FloatNDArray nda = arg.float_array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim));
        }
      else
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim));
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          NDArray nda = arg.array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim));
        }
      else if (arg.iscomplex ())
        {
          ComplexNDArray cnda = arg.complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim));
        }
      else
        err_wrong_type_arg (fcn, arg);
    }

  return retval;
}

/*
%!assert (fft ([]), [])
%!assert (fft (zeros (10,0)), zeros (10,0))
%!assert (fft (zeros (0,10)), zeros (0,10))
%!assert (fft (0), 0)
%!assert (fft (1), 1)
%!assert (fft (ones (2,2)), [2,2; 0,0])
%!assert (fft (eye (2,2)), [1,1; 1,-1])

%!assert (fft (single ([])), single ([]))
%!assert (fft (zeros (10,0,"single")), zeros (10,0,"single"))
%!assert (fft (zeros (0,10,"single")), zeros (0,10,"single"))
%!assert (fft (single (0)), single (0))
%!assert (fft (single (1)), single (1))
%!assert (fft (ones (2,2,"single")), single ([2,2; 0,0]))
%!assert (fft (eye (2,2,"single")), single ([1,1; 1,-1]))

%!error (fft ())
*/


DEFUN (fft, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} fft (@var{x})
@deftypefnx {} {} fft (@var{x}, @var{n})
@deftypefnx {} {} fft (@var{x}, @var{n}, @var{dim})
Compute the discrete Fourier transform of @var{A} using
a Fast Fourier Transform (FFT) algorithm.

The FFT is calculated along the first non-singleton dimension of the
array.  Thus if @var{x} is a matrix, @code{fft (@var{x})} computes the
FFT for each column of @var{x}.

If called with two arguments, @var{n} is expected to be an integer
specifying the number of elements of @var{x} to use, or an empty
matrix to specify that its value should be ignored.  If @var{n} is
larger than the dimension along which the FFT is calculated, then
@var{x} is resized and padded with zeros.  Otherwise, if @var{n} is
smaller than the dimension along which the FFT is calculated, then
@var{x} is truncated.

If called with three arguments, @var{dim} is an integer specifying the
dimension of the matrix along which the FFT is performed
@seealso{ifft, fft2, fftn, fftw}
@end deftypefn */)
{
  return do_fft (args, "fft", 0);
}


DEFUN (ifft, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} ifft (@var{x})
@deftypefnx {} {} ifft (@var{x}, @var{n})
@deftypefnx {} {} ifft (@var{x}, @var{n}, @var{dim})
Compute the inverse discrete Fourier transform of @var{A}
using a Fast Fourier Transform (FFT) algorithm.

The inverse FFT is calculated along the first non-singleton dimension
of the array.  Thus if @var{x} is a matrix, @code{fft (@var{x})} computes
the inverse FFT for each column of @var{x}.

If called with two arguments, @var{n} is expected to be an integer
specifying the number of elements of @var{x} to use, or an empty
matrix to specify that its value should be ignored.  If @var{n} is
larger than the dimension along which the inverse FFT is calculated, then
@var{x} is resized and padded with zeros.  Otherwise, if @var{n} is
smaller than the dimension along which the inverse FFT is calculated,
then @var{x} is truncated.

If called with three arguments, @var{dim} is an integer specifying the
dimension of the matrix along which the inverse FFT is performed
@seealso{fft, ifft2, ifftn, fftw}
@end deftypefn */)
{
  return do_fft (args, "ifft", 1);
}

/*
## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!test
%! N = 64;
%! n = 4;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%! S = fft (s);
%!
%! answer = zeros (size (t));
%! answer(n+1) = N/2;
%! answer(N-n+1) = N/2;
%!
%! assert (S, answer, 4*N*eps);

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!test
%! N = 64;
%! n = 7;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%!
%! S = zeros (size (t));
%! S(n+1) = N/2;
%! S(N-n+1) = N/2;
%!
%! assert (ifft (S), s, 4*N*eps);

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!test
%! N = 64;
%! n = 4;
%! t = single (2*pi*(0:1:N-1)/N);
%! s = cos (n*t);
%! S = fft (s);
%!
%! answer = zeros (size (t), "single");
%! answer(n+1) = N/2;
%! answer(N-n+1) = N/2;
%!
%! assert (S, answer, 4*N*eps ("single"));

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!test
%! N = 64;
%! n = 7;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%!
%! S = zeros (size (t), "single");
%! S(n+1) = N/2;
%! S(N-n+1) = N/2;
%!
%! assert (ifft (S), s, 4*N*eps ("single"));
*/