view libinterp/corefcn/svd.cc @ 23581:c3075ae020e1

maint: Deprecate is_complex_type and replace with iscomplex. * ov.h (is_complex_type): Use OCTAVE_DEPRECATED macro around function. * ov.h (iscomplex): New function. * __ichol__.cc, __ilu__.cc, balance.cc, bsxfun.cc, cellfun.cc, conv2.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, det.cc, dot.cc, fft.cc, fft2.cc, fftn.cc, filter.cc, find.cc, givens.cc, graphics.cc, gsvd.cc, hess.cc, hex2num.cc, inv.cc, kron.cc, lookup.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, lsode.cc, lu.cc, matrix_type.cc, mex.cc, mgorth.cc, ordschur.cc, pinv.cc, psi.cc, quad.cc, qz.cc, rcond.cc, schur.cc, sparse-xpow.cc, sparse.cc, sqrtm.cc, svd.cc, sylvester.cc, symtab.cc, typecast.cc, variables.cc, xnorm.cc, __eigs__.cc, amd.cc, ccolamd.cc, chol.cc, colamd.cc, qr.cc, symbfact.cc, ov-base.h, ov-complex.h, ov-cx-diag.h, ov-cx-mat.h, ov-cx-sparse.h, ov-flt-complex.h, ov-flt-cx-diag.h, ov-flt-cx-mat.h, jit-typeinfo.cc, pt-tm-const.cc: Replace instances of is_complex_type with iscomplex.
author Rik <rik@octave.org>
date Mon, 12 Jun 2017 21:18:23 -0700
parents 1b4f4ec53b4a
children 0cc2011d800e
line wrap: on
line source

/*

Copyright (C) 1996-2017 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "svd.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "pr-output.h"
#include "utils.h"
#include "variables.h"

static std::string Vsvd_driver = "gesdd";

template <typename T>
static typename octave::math::svd<T>::Type
svd_type (int nargin, int nargout, const octave_value_list & args, const T & A)
{
  if (nargout == 0 || nargout == 1)
    return octave::math::svd<T>::Type::sigma_only;
  else if (nargin == 1)
    return octave::math::svd<T>::Type::std;
  else
    if (! args(1).is_real_scalar ())
      return octave::math::svd<T>::Type::economy;
    else
      {
        if (A.rows () > A.columns ())
          return octave::math::svd<T>::Type::economy;
        else
          return octave::math::svd<T>::Type::std;
      }
}

template <typename T>
static typename octave::math::svd<T>::Driver
svd_driver (void)
{
  return (Vsvd_driver == "gesvd"
          ? octave::math::svd<T>::Driver::GESVD
          : octave::math::svd<T>::Driver::GESDD);
}

DEFUN (svd, args, nargout,
       classes: double single
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{s} =} svd (@var{A})
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A})
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, "econ")
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, 0)
@cindex singular value decomposition
Compute the singular value decomposition of @var{A}
@tex
$$
 A = U S V^{\dagger}
$$
@end tex
@ifnottex

@example
A = U*S*V'
@end example

@end ifnottex

The function @code{svd} normally returns only the vector of singular values.
When called with three return values, it computes
@tex
$U$, $S$, and $V$.
@end tex
@ifnottex
@var{U}, @var{S}, and @var{V}.
@end ifnottex
For example,

@example
svd (hilb (3))
@end example

@noindent
returns

@example
@group
ans =

  1.4083189
  0.1223271
  0.0026873
@end group
@end example

@noindent
and

@example
[u, s, v] = svd (hilb (3))
@end example

@noindent
returns

@example
@group
u =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867

s =

  1.40832  0.00000  0.00000
  0.00000  0.12233  0.00000
  0.00000  0.00000  0.00269

v =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867
@end group
@end example

When given a second argument that is not 0, @code{svd} returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of @var{U} or
@var{V}.

If the second argument is exactly 0, then the choice of decomposition is based
on the matrix @var{A}.  If @var{A} has more rows than columns then an
economy-sized decomposition is returned, otherwise a regular decomposition
is calculated.

Algorithm Notes: When calculating the full decomposition (left and right
singular matrices in addition to singular values) there is a choice of two
routines in @sc{lapack}.  The default routine used by Octave is @code{gesdd}
which is 5X faster than the alternative @code{gesvd}, but may use more memory
and may be less accurate for some matrices.  See the documentation for
@code{svd_driver} for more information.
@seealso{svd_driver, svds, eig, lu, chol, hess, qr, qz}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 2 || nargout == 2 || nargout > 3)
    print_usage ();

  octave_value arg = args(0);

  if (arg.ndims () != 2)
    error ("svd: A must be a 2-D matrix");

  octave_value_list retval;

  bool isfloat = arg.is_single_type ();

  if (isfloat)
    {
      if (arg.is_real_type ())
        {
          FloatMatrix tmp = arg.float_matrix_value ();

          if (tmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          octave::math::svd<FloatMatrix> result
            (tmp,
             svd_type<FloatMatrix> (nargin, nargout, args, tmp),
             svd_driver<FloatMatrix> ());

          FloatDiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
      else if (arg.iscomplex ())
        {
          FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();

          if (ctmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          octave::math::svd<FloatComplexMatrix> result
            (ctmp,
             svd_type<FloatComplexMatrix> (nargin, nargout, args, ctmp),
             svd_driver<FloatComplexMatrix> ());

          FloatDiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          Matrix tmp = arg.matrix_value ();

          if (tmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          octave::math::svd<Matrix> result
            (tmp,
             svd_type<Matrix> (nargin, nargout, args, tmp),
             svd_driver<Matrix> ());

          DiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
      else if (arg.iscomplex ())
        {
          ComplexMatrix ctmp = arg.complex_matrix_value ();

          if (ctmp.any_element_is_inf_or_nan ())
            error ("svd: cannot take SVD of matrix containing Inf or NaN values");

          octave::math::svd<ComplexMatrix> result
            (ctmp,
             svd_type<ComplexMatrix> (nargin, nargout, args, ctmp),
             svd_driver<ComplexMatrix> ());

          DiagMatrix sigma = result.singular_values ();

          if (nargout == 0 || nargout == 1)
            retval(0) = sigma.extract_diag ();
          else
            retval = ovl (result.left_singular_matrix (),
                          sigma,
                          result.right_singular_matrix ());
        }
      else
        err_wrong_type_arg ("svd", arg);
    }

  return retval;
}

/*
%!assert (svd ([1, 2; 2, 1]), [3; 1], sqrt (eps))

%!test
a = [1, 2; 3, 4] + [5, 6; 7, 8]*i;
[u,s,v] = svd (a);
assert (a, u * s * v', 128 * eps);

%!test
%! [u, s, v] = svd ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (u, [-x, -x; -x, x], sqrt (eps));
%! assert (s, [3, 0; 0, 1], sqrt (eps));
%! assert (v, [-x, x; -x, -x], sqrt (eps));

%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));

%!assert (svd (single ([1, 2; 2, 1])), single ([3; 1]), sqrt (eps ("single")))

%!test
%! [u, s, v] = svd (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (u, [-x, -x; -x, x], sqrt (eps ("single")));
%! assert (s, single ([3, 0; 0, 1]), sqrt (eps ("single")));
%! assert (v, [-x, x; -x, -x], sqrt (eps ("single")));

%!test
%! a = single ([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = single ([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = single ([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = single ([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps ("single")));

%!test
%! a = zeros (0, 5);
%! [u, s, v] = svd (a);
%! assert (size (u), [0, 0]);
%! assert (size (s), [0, 5]);
%! assert (size (v), [5, 5]);

%!test
%! a = zeros (5, 0);
%! [u, s, v] = svd (a, 1);
%! assert (size (u), [5, 0]);
%! assert (size (s), [0, 0]);
%! assert (size (v), [0, 0]);

%!test <*49309>
%! [~,~,v] = svd ([1, 1, 1], 0);
%! assert (size (v), [3 3]);
%! [~,~,v] = svd ([1, 1, 1], "econ");
%! assert (size (v), [3 1]);

%!error svd ()
%!error svd ([1, 2; 4, 5], 2, 3)
%!error [u, v] = svd ([1, 2; 3, 4])
*/

DEFUN (svd_driver, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{val} =} svd_driver ()
@deftypefnx {} {@var{old_val} =} svd_driver (@var{new_val})
@deftypefnx {} {} svd_driver (@var{new_val}, "local")
Query or set the underlying @sc{lapack} driver used by @code{svd}.

Currently recognized values are @qcode{"gesdd"} and @qcode{"gesvd"}.
The default is @qcode{"gesdd"}.

When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.

Algorithm Notes: The @sc{lapack} library provides two routines for calculating
the full singular value decomposition (left and right singular matrices as
well as singular values).  When calculating just the singular values the
following discussion is not relevant.

The default routine use by Octave is the newer @code{gesdd} which is based on a
Divide-and-Conquer algorithm that is 5X faster than the alternative
@code{gesvd}, which is based on QR factorization.  However, the new algorithm
can use significantly more memory.  For an @nospell{MxN} input matrix the
memory usage is of order O(min(M,N) ^ 2), whereas the alternative is of order
O(max(M,N)).  In general, modern computers have abundant memory so Octave has
chosen to prioritize speed.

In addition, there have been instances in the past where some input matrices
were not accurately decomposed by @code{gesdd}.  This appears to have been
resolved with modern versions of @sc{lapack}.  However, if certainty is
required the accuracy of the decomposition can always be tested after the fact
with

@example
@group
[@var{u}, @var{s}, @var{v}] = svd (@var{x});
norm (@var{x} - @var{u}*@var{s}*@var{v'}, "fro")
@end group
@end example

@seealso{svd}
@end deftypefn */)
{
  static const char *driver_names[] = { "gesvd", "gesdd", 0 };

  return SET_INTERNAL_VARIABLE_CHOICES (svd_driver, driver_names);
}

/*
%!test
%! A = [1+1i, 1-1i, 0; 0, 2, 0; 1i, 1i, 1+2i];
%! old_driver = svd_driver ("gesvd");
%! [U1, S1, V1] = svd (A);
%! svd_driver ("gesdd");
%! [U2, S2, V2] = svd (A);
%! svd_driver (old_driver);
%! assert (U1, U2, 5*eps);
%! assert (S1, S2, 5*eps);
%! assert (V1, V2, 5*eps);
*/