view libinterp/corefcn/lsode.cc @ 29996:c4bc77a90fb5

move lsode functions to octave namespace and make local functions static There is no public header file for the functions defined in lsode.cc so making all local functions in that file static should not affect users. * lsode.cc: Move all functions inside octave namespace. Declare all local functions static.
author John W. Eaton <jwe@octave.org>
date Wed, 18 Aug 2021 01:08:52 -0400
parents 7d6709900da7
children 796f54d4ddbf
line wrap: on
line source

////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <list>
#include <string>

#include "LSODE.h"
#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "interpreter-private.h"
#include "ovl.h"
#include "ov-fcn.h"
#include "ov-cell.h"
#include "pager.h"
#include "parse.h"
#include "pr-output.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"

#include "LSODE-opts.cc"

OCTAVE_NAMESPACE_BEGIN

// Global pointer for user defined function required by lsode.
static octave_value lsode_fcn;

// Global pointer for optional user defined jacobian function used by lsode.
static octave_value lsode_jac;

// Have we warned about imaginary values returned from user function?
static bool warned_fcn_imaginary = false;
static bool warned_jac_imaginary = false;

// Is this a recursive call?
static int call_depth = 0;

static ColumnVector
lsode_user_function (const ColumnVector& x, double t)
{
  ColumnVector retval;

  octave_value_list args;
  args(1) = t;
  args(0) = x;

  if (lsode_fcn.is_defined ())
    {
      octave_value_list tmp;

      try
        {
          tmp = octave::feval (lsode_fcn, args, 1);
        }
      catch (octave::execution_exception& ee)
        {
          err_user_supplied_eval (ee, "lsode");
        }

      if (tmp.empty () || ! tmp(0).is_defined ())
        err_user_supplied_eval ("lsode");

      if (! warned_fcn_imaginary && tmp(0).iscomplex ())
        {
          warning ("lsode: ignoring imaginary part returned from user-supplied function");
          warned_fcn_imaginary = true;
        }

      retval = tmp(0).xvector_value ("lsode: expecting user supplied function to return numeric vector");

      if (retval.isempty ())
        err_user_supplied_eval ("lsode");
    }

  return retval;
}

static Matrix
lsode_user_jacobian (const ColumnVector& x, double t)
{
  Matrix retval;

  octave_value_list args;
  args(1) = t;
  args(0) = x;

  if (lsode_jac.is_defined ())
    {
      octave_value_list tmp;

      try
        {
          tmp = octave::feval (lsode_jac, args, 1);
        }
      catch (octave::execution_exception& ee)
        {
          err_user_supplied_eval (ee, "lsode");
        }

      if (tmp.empty () || ! tmp(0).is_defined ())
        err_user_supplied_eval ("lsode");

      if (! warned_jac_imaginary && tmp(0).iscomplex ())
        {
          warning ("lsode: ignoring imaginary part returned from user-supplied jacobian function");
          warned_jac_imaginary = true;
        }

      retval = tmp(0).xmatrix_value ("lsode: expecting user supplied jacobian function to return numeric array");

      if (retval.isempty ())
        err_user_supplied_eval ("lsode");
    }

  return retval;
}

DEFMETHOD (lsode, interp, args, nargout,
           doc: /* -*- texinfo -*-
@deftypefn  {} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t})
@deftypefnx {} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t}, @var{t_crit})
Ordinary Differential Equation (ODE) solver.

The set of differential equations to solve is
@tex
$$ {dx \over dt} = f (x, t) $$
with
$$ x(t_0) = x_0 $$
@end tex
@ifnottex

@example
@group
dx
-- = f (x, t)
dt
@end group
@end example

@noindent
with

@example
x(t_0) = x_0
@end example

@end ifnottex
The solution is returned in the matrix @var{x}, with each row
corresponding to an element of the vector @var{t}.  The first element
of @var{t} should be @math{t_0} and should correspond to the initial
state of the system @var{x_0}, so that the first row of the output
is @var{x_0}.

The first argument, @var{fcn}, is a string, inline, or function handle
that names the function @math{f} to call to compute the vector of right
hand sides for the set of equations.  The function must have the form

@example
@var{xdot} = f (@var{x}, @var{t})
@end example

@noindent
in which @var{xdot} and @var{x} are vectors and @var{t} is a scalar.

If @var{fcn} is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function @math{f} described above, and the second element names a
function to compute the Jacobian of @math{f}.  The Jacobian function
must have the form

@example
@var{jac} = j (@var{x}, @var{t})
@end example

@noindent
in which @var{jac} is the matrix of partial derivatives
@tex
$$ J = {\partial f_i \over \partial x_j} = \left[\matrix{
{\partial f_1 \over \partial x_1}
  & {\partial f_1 \over \partial x_2}
  & \cdots
  & {\partial f_1 \over \partial x_N} \cr
{\partial f_2 \over \partial x_1}
  & {\partial f_2 \over \partial x_2}
  & \cdots
  & {\partial f_2 \over \partial x_N} \cr
 \vdots & \vdots & \ddots & \vdots \cr
{\partial f_3 \over \partial x_1}
  & {\partial f_3 \over \partial x_2}
  & \cdots
  & {\partial f_3 \over \partial x_N} \cr}\right]$$
@end tex
@ifnottex

@example
@group
             | df_1  df_1       df_1 |
             | ----  ----  ...  ---- |
             | dx_1  dx_2       dx_N |
             |                       |
             | df_2  df_2       df_2 |
             | ----  ----  ...  ---- |
      df_i   | dx_1  dx_2       dx_N |
jac = ---- = |                       |
      dx_j   |  .    .     .    .    |
             |  .    .      .   .    |
             |  .    .       .  .    |
             |                       |
             | df_N  df_N       df_N |
             | ----  ----  ...  ---- |
             | dx_1  dx_2       dx_N |
@end group
@end example

@end ifnottex

The second argument specifies the initial state of the system @math{x_0}.  The
third argument is a vector, @var{t}, specifying the time values for which a
solution is sought.

The fourth argument is optional, and may be used to specify a set of
times that the ODE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.

After a successful computation, the value of @var{istate} will be 2
(consistent with the Fortran version of @sc{lsode}).

If the computation is not successful, @var{istate} will be something
other than 2 and @var{msg} will contain additional information.

You can use the function @code{lsode_options} to set optional
parameters for @code{lsode}.

See @nospell{Alan C. Hindmarsh},
@cite{ODEPACK, A Systematized Collection of ODE Solvers},
in Scientific Computing, @nospell{R. S. Stepleman}, editor, (1983)
or @url{https://computing.llnl.gov/projects/odepack}
for more information about the inner workings of @code{lsode}.

Example: Solve the @nospell{Van der Pol} equation

@example
@group
fvdp = @@(@var{y},@var{t}) [@var{y}(2); (1 - @var{y}(1)^2) * @var{y}(2) - @var{y}(1)];
@var{t} = linspace (0, 20, 100);
@var{y} = lsode (fvdp, [2; 0], @var{t});
@end group
@end example
@seealso{daspk, dassl, dasrt}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 3 || nargin > 4)
    print_usage ();

  warned_fcn_imaginary = false;
  warned_jac_imaginary = false;

  unwind_protect_var<int> restore_var (call_depth);
  call_depth++;

  if (call_depth > 1)
    error ("lsode: invalid recursive call");

  symbol_table& symtab = interp.get_symbol_table ();

  std::string fcn_name, fname, jac_name, jname;

  lsode_fcn = octave_value ();
  lsode_jac = octave_value ();

  octave_value f_arg = args(0);

  std::list<std::string> parameter_names ({"x", "t"});

  if (f_arg.iscell ())
    {
      Cell c = f_arg.cell_value ();
      if (c.numel () == 1)
        f_arg = c(0);
      else if (c.numel () == 2)
        {
          lsode_fcn = get_function_handle (interp, c(0), parameter_names);

          if (lsode_fcn.is_defined ())
            {
              lsode_jac = get_function_handle (interp, c(1), parameter_names);

              if (lsode_jac.is_undefined ())
                lsode_fcn = octave_value ();
            }
        }
      else
        error ("lsode: incorrect number of elements in cell array");
    }

  if (lsode_fcn.is_undefined () && ! f_arg.iscell ())
    {
      if (f_arg.is_function_handle () || f_arg.is_inline_function ())
        lsode_fcn = f_arg;
      else
        {
          switch (f_arg.rows ())
            {
            case 1:
              lsode_fcn = get_function_handle (interp, f_arg, parameter_names);
              break;

            case 2:
              {
                string_vector tmp = f_arg.string_vector_value ();

                lsode_fcn = get_function_handle (interp, tmp(0),
                                                 parameter_names);

                if (lsode_fcn.is_defined ())
                  {
                    lsode_jac = get_function_handle (interp, tmp(1),
                                                     parameter_names);

                    if (lsode_jac.is_undefined ())
                      lsode_fcn = octave_value ();
                  }
              }
              break;

            default:
              error ("lsode: first arg should be a string or 2-element string array");
            }
        }
    }

  if (lsode_fcn.is_undefined ())
    error ("lsode: FCN argument is not a valid function name or handle");

  ColumnVector state = args(1).xvector_value ("lsode: initial state X_0 must be a vector");
  ColumnVector out_times = args(2).xvector_value ("lsode: output time variable T must be a vector");

  ColumnVector crit_times;

  int crit_times_set = 0;
  if (nargin > 3)
    {
      crit_times = args(3).xvector_value ("lsode: list of critical times T_CRIT must be a vector");

      crit_times_set = 1;
    }

  double tzero = out_times (0);

  ODEFunc func (lsode_user_function);

  if (lsode_jac.is_defined ())
    func.set_jacobian_function (lsode_user_jacobian);

  LSODE ode (state, tzero, func);

  ode.set_options (lsode_opts);

  Matrix output;
  if (crit_times_set)
    output = ode.integrate (out_times, crit_times);
  else
    output = ode.integrate (out_times);

  if (fcn_name.length ())
    symtab.clear_function (fcn_name);
  if (jac_name.length ())
    symtab.clear_function (jac_name);

  std::string msg = ode.error_message ();

  octave_value_list retval (3);

  if (ode.integration_ok ())
    retval(0) = output;
  else if (nargout < 2)
    error ("lsode: %s", msg.c_str ());
  else
    retval(0) = Matrix ();

  retval(1) = static_cast<double> (ode.integration_state ());
  retval(2) = msg;

  return retval;
}

/*

## dassl-1.m
##
## Test lsode() function
##
## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         20 May 1998
##
## Problem
##
##    y1' = -y2,   y1(0) = 1
##    y2' =  y1,   y2(0) = 0
##
## Solution
##
##    y1(t) = cos(t)
##    y2(t) = sin(t)
##
%!function xdot = __f (x, t)
%!  xdot = [-x(2); x(1)];
%!endfunction
%!test
%!
%! x0 = [1; 0];
%! xdot0 = [0; 1];
%! t = (0:1:10)';
%!
%! tol = 500 * lsode_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [cos(t), sin(t)];
%!
%! assert (x, y, tol);

%!function xdotdot = __f (x, t)
%!  xdotdot = [x(2); -x(1)];
%!endfunction
%!test
%!
%! x0 = [1; 0];
%! t = [0; 2*pi];
%! tol = 100 * dassl_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [1, 0; 1, 0];
%!
%! assert (x, y, tol);

%!function xdot = __f (x, t)
%!  xdot = x;
%!endfunction
%!test
%!
%! x0 = 1;
%! t = [0; 1];
%! tol = 100 * dassl_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [1; e];
%!
%! assert (x, y, tol);

%!test
%! lsode_options ("absolute tolerance", eps);
%! assert (lsode_options ("absolute tolerance") == eps);

%!error lsode_options ("foo", 1, 2)
*/

OCTAVE_NAMESPACE_END