view liboctave/array/fCRowVector.cc @ 25237:ca022a8c4015

linspace: handle ranges with equal Inf endpoints (bug #53489) * CMatrix.cc (ComplexMatrix::linspace): Change delta calculation to yield 0 if endpoints are the same, otherwise calculate delta as normal. * CRowVector.cc (ComplexRowVector::linspace): Likewise. * dMatrix.cc (Matrix::linspace): Likewise. * dRowVector.cc (RowVector::linspace): Likewise. * fCMatrix.cc (FloatComplexMatrix::linspace): Likewise. * fCRowVector.cc (FloatComplexRowVector::linspace): Likewise. * fMatrix.cc (FloatMatrix::linspace): Likewise. * fRowVector.cc (FloatRowVector::linspace): Likewise. * data.cc (Flinspace): Added Matlab compatibility tests. * logspace.m: Added same tests as in linspace containing Inf in endpoints.
author Maor Shutman <maorus12@gmail.com>
date Fri, 06 Apr 2018 20:25:05 +0300
parents 6652d3823428
children cb1606f78f6b
line wrap: on
line source

/*

Copyright (C) 1994-2018 John W. Eaton

This file is part of Octave.

Octave is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Octave is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<https://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <iostream>

#include "Array-util.h"
#include "functor.h"
#include "lo-blas-proto.h"
#include "lo-error.h"
#include "mx-base.h"
#include "mx-inlines.cc"
#include "oct-cmplx.h"

// FloatComplex Row Vector class

bool
FloatComplexRowVector::operator == (const FloatComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  if (len != a.numel ())
    return 0;
  return mx_inline_equal (len, data (), a.data ());
}

bool
FloatComplexRowVector::operator != (const FloatComplexRowVector& a) const
{
  return !(*this == a);
}

// destructive insert/delete/reorder operations

FloatComplexRowVector&
FloatComplexRowVector::insert (const FloatRowVector& a, octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::insert (const FloatComplexRowVector& a,
                               octave_idx_type c)
{
  octave_idx_type a_len = a.numel ();

  if (c < 0 || c + a_len > numel ())
    (*current_liboctave_error_handler) ("range error for insert");

  if (a_len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < a_len; i++)
        xelem (c+i) = a.elem (i);
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (float val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (const FloatComplex& val)
{
  octave_idx_type len = numel ();

  if (len > 0)
    {
      make_unique ();

      for (octave_idx_type i = 0; i < len; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (float val, octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::fill (const FloatComplex& val,
                             octave_idx_type c1, octave_idx_type c2)
{
  octave_idx_type len = numel ();

  if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len)
    (*current_liboctave_error_handler) ("range error for fill");

  if (c1 > c2) { std::swap (c1, c2); }

  if (c2 >= c1)
    {
      make_unique ();

      for (octave_idx_type i = c1; i <= c2; i++)
        xelem (i) = val;
    }

  return *this;
}

FloatComplexRowVector
FloatComplexRowVector::append (const FloatRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  FloatComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

FloatComplexRowVector
FloatComplexRowVector::append (const FloatComplexRowVector& a) const
{
  octave_idx_type len = numel ();
  octave_idx_type nc_insert = len;
  FloatComplexRowVector retval (len + a.numel ());
  retval.insert (*this, 0);
  retval.insert (a, nc_insert);
  return retval;
}

FloatComplexColumnVector
FloatComplexRowVector::hermitian (void) const
{
  return MArray<FloatComplex>::hermitian (std::conj);
}

FloatComplexColumnVector
FloatComplexRowVector::transpose (void) const
{
  return MArray<FloatComplex>::transpose ();
}

FloatComplexRowVector
conj (const FloatComplexRowVector& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float>> (a);
}

// resize is the destructive equivalent for this one

FloatComplexRowVector
FloatComplexRowVector::extract (octave_idx_type c1, octave_idx_type c2) const
{
  if (c1 > c2) { std::swap (c1, c2); }

  octave_idx_type new_c = c2 - c1 + 1;

  FloatComplexRowVector result (new_c);

  for (octave_idx_type i = 0; i < new_c; i++)
    result.elem (i) = elem (c1+i);

  return result;
}

FloatComplexRowVector
FloatComplexRowVector::extract_n (octave_idx_type r1, octave_idx_type n) const
{
  FloatComplexRowVector result (n);

  for (octave_idx_type i = 0; i < n; i++)
    result.elem (i) = elem (r1+i);

  return result;
}

// row vector by row vector -> row vector operations

FloatComplexRowVector&
FloatComplexRowVector::operator += (const FloatRowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator +=", len, a_len);

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_add2 (len, d, a.data ());
  return *this;
}

FloatComplexRowVector&
FloatComplexRowVector::operator -= (const FloatRowVector& a)
{
  octave_idx_type len = numel ();

  octave_idx_type a_len = a.numel ();

  if (len != a_len)
    octave::err_nonconformant ("operator -=", len, a_len);

  if (len == 0)
    return *this;

  FloatComplex *d = fortran_vec (); // Ensures only 1 reference to my privates!

  mx_inline_sub2 (len, d, a.data ());
  return *this;
}

// row vector by matrix -> row vector

FloatComplexRowVector
operator * (const FloatComplexRowVector& v, const FloatComplexMatrix& a)
{
  FloatComplexRowVector retval;

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_nr = octave::to_f77_int (a.rows ());
  F77_INT a_nc = octave::to_f77_int (a.cols ());

  if (a_nr != len)
    octave::err_nonconformant ("operator *", 1, len, a_nr, a_nc);

  if (len == 0)
    retval.resize (a_nc, 0.0);
  else
    {
      // Transpose A to form A'*x == (x'*A)'

      F77_INT ld = a_nr;

      retval.resize (a_nc);
      FloatComplex *y = retval.fortran_vec ();

      F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("T", 1),
                               a_nr, a_nc, 1.0, F77_CONST_CMPLX_ARG (a.data ()),
                               ld, F77_CONST_CMPLX_ARG (v.data ()), 1, 0.0, F77_CMPLX_ARG (y), 1
                               F77_CHAR_ARG_LEN (1)));
    }

  return retval;
}

FloatComplexRowVector
operator * (const FloatRowVector& v, const FloatComplexMatrix& a)
{
  FloatComplexRowVector tmp (v);
  return tmp * a;
}

// other operations

FloatComplex
FloatComplexRowVector::min (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return FloatComplex (0.0);

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) < absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

FloatComplex
FloatComplexRowVector::max (void) const
{
  octave_idx_type len = numel ();
  if (len == 0)
    return FloatComplex (0.0);

  FloatComplex res = elem (0);
  float absres = std::abs (res);

  for (octave_idx_type i = 1; i < len; i++)
    if (std::abs (elem (i)) > absres)
      {
        res = elem (i);
        absres = std::abs (res);
      }

  return res;
}

// i/o

std::ostream&
operator << (std::ostream& os, const FloatComplexRowVector& a)
{
//  int field_width = os.precision () + 7;
  for (octave_idx_type i = 0; i < a.numel (); i++)
    os << ' ' /* setw (field_width) */ << a.elem (i);
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexRowVector& a)
{
  octave_idx_type len = a.numel ();

  if (len > 0)
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < len; i++)
        {
          is >> tmp;
          if (is)
            a.elem (i) = tmp;
          else
            break;
        }
    }
  return is;
}

// row vector by column vector -> scalar

// row vector by column vector -> scalar

FloatComplex
operator * (const FloatComplexRowVector& v, const FloatColumnVector& a)
{
  FloatComplexColumnVector tmp (a);
  return v * tmp;
}

FloatComplex
operator * (const FloatComplexRowVector& v, const FloatComplexColumnVector& a)
{
  FloatComplex retval (0.0, 0.0);

  F77_INT len = octave::to_f77_int (v.numel ());

  F77_INT a_len = octave::to_f77_int (a.numel ());

  if (len != a_len)
    octave::err_nonconformant ("operator *", len, a_len);

  if (len != 0)
    F77_FUNC (xcdotu, XCDOTU) (len, F77_CONST_CMPLX_ARG (v.data ()), 1,
                               F77_CONST_CMPLX_ARG (a.data ()), 1, F77_CMPLX_ARG (&retval));

  return retval;
}

// other operations

FloatComplexRowVector
linspace (const FloatComplex& x1, const FloatComplex& x2, octave_idx_type n)
{
  NoAlias<FloatComplexRowVector> retval;

  if (n < 1)
    return retval;
  else
    retval.clear (n);

  retval(0) = x1;

  FloatComplex delta = (x1 == x2) ? 0 : (x2 - x1) / (n - 1.0f);
  for (octave_idx_type i = 1; i < n-1; i++)
    retval(i) = x1 + static_cast<float> (i)*delta;

  retval(n-1) = x2;

  return retval;
}