view libinterp/dldfcn/amd.cc @ 21140:e06e600f396a

eliminate use of USE_64_BIT_IDX_T * common.mk (do_subst_config_vals, do_subst_cross_config_vals): Don't substitute OCTAVE_CONF_USE_64_BIT_IDX_T. * toplev.cc (octave_config_info): Set USE_64_BIT_IDX_T from OCTAVE_CONF_ENABLE_64. * oct-conf.in.h (OCTAVE_CONF_USE_64_BIT_IDX_T): Delete macro. * oct-hdf5.h, amd.cc, ccolamd.cc, colamd.cc, dmperm.cc, symbfact.cc, ov.cc, CSparse.cc, CSparse.h, MArray-i.cc, dSparse.cc, dSparse.h, SparseCmplxQR.h, SparseQR.h, sparse-base-chol.cc, lo-array-errwarn.cc, lo-array-gripes.cc, oct-sparse.h, acinclude.m4, oct-conf-post.in.h, computer.m: Use ENABLE_64 instead of USE_64_BIT_IDX_T.
author John W. Eaton <jwe@octave.org>
date Mon, 25 Jan 2016 19:16:31 -0500
parents 3d0d84305600
children fcac5dbbf9ed
line wrap: on
line source

/*

Copyright (C) 2008-2015 David Bateman

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

// This is the octave interface to amd, which bore the copyright given
// in the help of the functions.

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cstdlib>

#include <string>
#include <vector>

#include "ov.h"
#include "defun-dld.h"
#include "errwarn.h"
#include "pager.h"
#include "ov-re-mat.h"

#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"
#include "oct-map.h"

#include "oct-sparse.h"
#include "oct-locbuf.h"

#if defined (ENABLE_64)
#define AMD_NAME(name) amd_l ## name
#else
#define AMD_NAME(name) amd ## name
#endif

DEFUN_DLD (amd, args, nargout,
           "-*- texinfo -*-\n\
@deftypefn  {} {@var{p} =} amd (@var{S})\n\
@deftypefnx {} {@var{p} =} amd (@var{S}, @var{opts})\n\
\n\
Return the approximate minimum degree permutation of a matrix.\n\
\n\
This is a permutation such that the Cholesky@tie{}factorization of\n\
@code{@var{S} (@var{p}, @var{p})} tends to be sparser than the\n\
Cholesky@tie{}factorization of @var{S} itself.  @code{amd} is typically\n\
faster than @code{symamd} but serves a similar purpose.\n\
\n\
The optional parameter @var{opts} is a structure that controls the behavior\n\
of @code{amd}.  The fields of the structure are\n\
\n\
@table @asis\n\
@item @var{opts}.dense\n\
Determines what @code{amd} considers to be a dense row or column of the\n\
input matrix.  Rows or columns with more than @code{max (16, (dense *\n\
sqrt (@var{n})))} entries, where @var{n} is the order of the matrix @var{S},\n\
are ignored by @code{amd} during the calculation of the permutation.\n\
The value of dense must be a positive scalar and the default value is 10.0\n\
\n\
@item @var{opts}.aggressive\n\
If this value is a nonzero scalar, then @code{amd} performs aggressive\n\
absorption.  The default is not to perform aggressive absorption.\n\
@end table\n\
\n\
The author of the code itself is Timothy A. Davis\n\
@email{davis@@cise.ufl.edu}, University of Florida\n\
(see @url{http://www.cise.ufl.edu/research/sparse/amd}).\n\
@seealso{symamd, colamd}\n\
@end deftypefn")
{
#ifdef HAVE_AMD
  int nargin = args.length ();

  if (nargin < 1 || nargin > 2)
    print_usage ();

  octave_idx_type n_row, n_col;
  const octave_idx_type *ridx, *cidx;
  SparseMatrix sm;
  SparseComplexMatrix scm;

  if (args(0).is_sparse_type ())
    {
      if (args(0).is_complex_type ())
        {
          scm = args(0).sparse_complex_matrix_value ();
          n_row = scm.rows ();
          n_col = scm.cols ();
          ridx = scm.xridx ();
          cidx = scm.xcidx ();
        }
      else
        {
          sm = args(0).sparse_matrix_value ();
          n_row = sm.rows ();
          n_col = sm.cols ();
          ridx = sm.xridx ();
          cidx = sm.xcidx ();
        }
    }
  else
    {
      if (args(0).is_complex_type ())
        sm = SparseMatrix (real (args(0).complex_matrix_value ()));
      else
        sm = SparseMatrix (args(0).matrix_value ());

      n_row = sm.rows ();
      n_col = sm.cols ();
      ridx = sm.xridx ();
      cidx = sm.xcidx ();
    }

  if (n_row != n_col)
    err_square_matrix_required ("amd", "S");

  OCTAVE_LOCAL_BUFFER (double, Control, AMD_CONTROL);
  AMD_NAME (_defaults) (Control) ;
  if (nargin > 1)
    {
      octave_scalar_map arg1 = args(1).xscalar_map_value ("amd: OPTS argument must be a scalar structure");

      octave_value tmp;

      tmp = arg1.getfield ("dense");
      if (tmp.is_defined ())
        Control[AMD_DENSE] = tmp.double_value ();

      tmp = arg1.getfield ("aggressive");
      if (tmp.is_defined ())
        Control[AMD_AGGRESSIVE] = tmp.double_value ();
    }

  OCTAVE_LOCAL_BUFFER (octave_idx_type, P, n_col);
  Matrix xinfo (AMD_INFO, 1);
  double *Info = xinfo.fortran_vec ();

  // FIXME: how can we manage the memory allocation of amd
  //        in a cleaner manner?
  SUITESPARSE_ASSIGN_FPTR (malloc_func, amd_malloc, malloc);
  SUITESPARSE_ASSIGN_FPTR (free_func, amd_free, free);
  SUITESPARSE_ASSIGN_FPTR (calloc_func, amd_calloc, calloc);
  SUITESPARSE_ASSIGN_FPTR (realloc_func, amd_realloc, realloc);
  SUITESPARSE_ASSIGN_FPTR (printf_func, amd_printf, printf);

  octave_idx_type result = AMD_NAME (_order) (n_col, cidx, ridx, P,
                                              Control, Info);

  if (result == AMD_OUT_OF_MEMORY)
    error ("amd: out of memory");
  else if (result == AMD_INVALID)
    error ("amd: matrix S is corrupted");

  Matrix Pout (1, n_col);
  for (octave_idx_type i = 0; i < n_col; i++)
    Pout.xelem (i) = P[i] + 1;

  if (nargout > 1)
    return ovl (Pout, xinfo);
  else
    return ovl (Pout);

#else
  err_disabled_feature ("amd", "AMD");
#endif
}

/*
%!shared A, A2, opts
%! A = ones (20, 30);
%! A2 = ones (30, 30);
%!
%!testif HAVE_AMD
%! assert(amd (A2), [1:30])
%! opts.dense = 25;
%! assert(amd (A2, opts), [1:30])
%! opts.aggressive = 1;
%! assert(amd (A2, opts), [1:30])

%!error <S must be a square matrix|was unavailable or disabled> amd (A)
%!error amd (A2, 2)
%!error <matrix S is corrupted|was unavailable or disabled> amd ([])
*/