view liboctave/array/fCNDArray.cc @ 21100:e39e05d90788

Switch gripe_XXX to either err_XXX or warn_XXX naming scheme. * libinterp/corefcn/errwarn.h, libinterp/corefcn/errwarn.cc: New header and .cc file with common errors and warnings for libinterp. * libinterp/corefcn/module.mk: Add errwarn.h, errwarn.cc to build system. * liboctave/util/lo-array-errwarn.h, liboctave/util/lo-array-errwarn.cc: New header and .cc file with common errors and warnings for liboctave. * liboctave/util/module.mk: Add lo-array-errwarn.h, lo-array-errwarn.cc to build system. * lo-array-gripes.h: #include "lo-array-errwarn.h" for access to class index_exception. Remove const char *error_id_XXX prototypes. * lo-array-gripes.cc: Remove const char *error_id_XXX initializations. Remove index_exception method definitions. * Cell.cc, __pchip_deriv__.cc, __qp__.cc, balance.cc, betainc.cc, cellfun.cc, daspk.cc, dasrt.cc, dassl.cc, data.cc, debug.cc, defaults.cc, det.cc, dirfns.cc, eig.cc, fft.cc, fft2.cc, fftn.cc, find.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, graphics.in.h, help.cc, hess.cc, hex2num.cc, input.cc, inv.cc, jit-typeinfo.cc, load-save.cc, lookup.cc, ls-hdf5.cc, ls-mat-ascii.cc, ls-mat4.cc, ls-mat5.cc, ls-oct-binary.cc, ls-oct-text.cc, lsode.cc, lu.cc, luinc.cc, max.cc, mgorth.cc, oct-hist.cc, oct-procbuf.cc, oct-stream.cc, oct.h, pager.cc, pinv.cc, pr-output.cc, quad.cc, qz.cc, rand.cc, rcond.cc, regexp.cc, schur.cc, sparse-xdiv.cc, sparse-xpow.cc, sparse.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, syscalls.cc, typecast.cc, utils.cc, variables.cc, xdiv.cc, xnorm.cc, xpow.cc, __eigs__.cc, __glpk__.cc, __magick_read__.cc, __osmesa_print__.cc, audiodevinfo.cc, audioread.cc, chol.cc, dmperm.cc, fftw.cc, qr.cc, symbfact.cc, symrcm.cc, ov-base-diag.cc, ov-base-int.cc, ov-base-mat.cc, ov-base-scalar.cc, ov-base-sparse.cc, ov-base.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-builtin.cc, ov-cell.cc, ov-ch-mat.cc, ov-class.cc, ov-complex.cc, ov-complex.h, ov-cs-list.cc, ov-cx-diag.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-float.cc, ov-float.h, ov-flt-complex.cc, ov-flt-complex.h, ov-flt-cx-diag.cc, ov-flt-cx-mat.cc, ov-flt-re-mat.cc, ov-int16.cc, ov-int32.cc, ov-int64.cc, ov-int8.cc, ov-intx.h, ov-mex-fcn.cc, ov-perm.cc, ov-range.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-scalar.h, ov-str-mat.cc, ov-struct.cc, ov-type-conv.h, ov-uint16.cc, ov-uint32.cc, ov-uint64.cc, ov-uint8.cc, ov-usr-fcn.cc, ov.cc, op-b-b.cc, op-b-bm.cc, op-b-sbm.cc, op-bm-b.cc, op-bm-bm.cc, op-bm-sbm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-class.cc, op-cm-cm.cc, op-cm-cs.cc, op-cm-m.cc, op-cm-s.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-cm.cc, op-cs-cs.cc, op-cs-m.cc, op-cs-s.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-dms-template.cc, op-double-conv.cc, op-fcdm-fcdm.cc, op-fcdm-fdm.cc, op-fcm-fcm.cc, op-fcm-fcs.cc, op-fcm-fm.cc, op-fcm-fs.cc, op-fcn.cc, op-fcs-fcm.cc, op-fcs-fcs.cc, op-fcs-fm.cc, op-fcs-fs.cc, op-fdm-fdm.cc, op-float-conv.cc, op-fm-fcm.cc, op-fm-fcs.cc, op-fm-fm.cc, op-fm-fs.cc, op-fs-fcm.cc, op-fs-fcs.cc, op-fs-fm.cc, op-fs-fs.cc, op-i16-i16.cc, op-i32-i32.cc, op-i64-i64.cc, op-i8-i8.cc, op-int-concat.cc, op-int-conv.cc, op-int.h, op-m-cm.cc, op-m-cs.cc, op-m-m.cc, op-m-s.cc, op-m-scm.cc, op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-cm.cc, op-s-cs.cc, op-s-m.cc, op-s-s.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-b.cc, op-sbm-bm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-m.cc, op-str-s.cc, op-str-str.cc, op-struct.cc, op-ui16-ui16.cc, op-ui32-ui32.cc, op-ui64-ui64.cc, op-ui8-ui8.cc, ops.h, lex.ll, pt-assign.cc, pt-eval.cc, pt-idx.cc, pt-loop.cc, pt-mat.cc, pt-stmt.cc, Array-util.cc, Array-util.h, Array.cc, CColVector.cc, CDiagMatrix.cc, CMatrix.cc, CNDArray.cc, CRowVector.cc, CSparse.cc, DiagArray2.cc, MDiagArray2.cc, MSparse.cc, PermMatrix.cc, Range.cc, Sparse.cc, dColVector.cc, dDiagMatrix.cc, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, fCColVector.cc, fCDiagMatrix.cc, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fColVector.cc, fDiagMatrix.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc, idx-vector.cc, CmplxGEPBAL.cc, dbleGEPBAL.cc, fCmplxGEPBAL.cc, floatGEPBAL.cc, Sparse-diag-op-defs.h, Sparse-op-defs.h, Sparse-perm-op-defs.h, mx-inlines.cc, mx-op-defs.h, oct-binmap.h: Replace 'include "gripes.h"' with 'include "errwarn.h". Change all gripe_XXX to err_XXX or warn_XXX or errwarn_XXX.
author Rik <rik@octave.org>
date Mon, 18 Jan 2016 18:28:06 -0800
parents 2a99b8b250cd
children 7cac4e7458f2
line wrap: on
line source

// N-D Array  manipulations.
/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2009 VZLU Prague, a.s.

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cfloat>

#include <vector>

#include "Array-util.h"
#include "f77-fcn.h"
#include "fCNDArray.h"
#include "functor.h"
#include "lo-ieee.h"
#include "lo-mappers.h"
#include "mx-base.h"
#include "mx-op-defs.h"
#include "mx-fcnda-fs.h"
#include "oct-fftw.h"
#include "oct-locbuf.h"

#include "bsxfun-defs.cc"

FloatComplexNDArray::FloatComplexNDArray (const charNDArray& a)
  : MArray<FloatComplex> (a.dims ())
{
  octave_idx_type n = a.numel ();
  for (octave_idx_type i = 0; i < n; i++)
    xelem (i) = static_cast<unsigned char> (a(i));
}

#if defined (HAVE_FFTW)

FloatComplexNDArray
FloatComplexNDArray::fourier (int dim) const
{
  dim_vector dv = dims ();

  if (dim > dv.length () || dim < 0)
    return FloatComplexNDArray ();

  octave_idx_type stride = 1;
  octave_idx_type n = dv(dim);

  for (int i = 0; i < dim; i++)
    stride *= dv(i);

  octave_idx_type howmany = numel () / dv(dim);
  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
  octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride);
  octave_idx_type dist = (stride == 1 ? n : 1);

  const FloatComplex *in (fortran_vec ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  // Need to be careful here about the distance between fft's
  for (octave_idx_type k = 0; k < nloop; k++)
    octave_fftw::fft (in + k * stride * n, out + k * stride * n,
                      n, howmany, stride, dist);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourier (int dim) const
{
  dim_vector dv = dims ();

  if (dim > dv.length () || dim < 0)
    return FloatComplexNDArray ();

  octave_idx_type stride = 1;
  octave_idx_type n = dv(dim);

  for (int i = 0; i < dim; i++)
    stride *= dv(i);

  octave_idx_type howmany = numel () / dv(dim);
  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
  octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv(dim) / stride);
  octave_idx_type dist = (stride == 1 ? n : 1);

  const FloatComplex *in (fortran_vec ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  // Need to be careful here about the distance between fft's
  for (octave_idx_type k = 0; k < nloop; k++)
    octave_fftw::ifft (in + k * stride * n, out + k * stride * n,
                       n, howmany, stride, dist);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::fourier2d (void) const
{
  dim_vector dv = dims ();
  if (dv.length () < 2)
    return FloatComplexNDArray ();

  dim_vector dv2 (dv(0), dv(1));
  const FloatComplex *in = fortran_vec ();
  FloatComplexNDArray retval (dv);
  FloatComplex *out = retval.fortran_vec ();
  octave_idx_type howmany = numel () / dv(0) / dv(1);
  octave_idx_type dist = dv(0) * dv(1);

  for (octave_idx_type i=0; i < howmany; i++)
    octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourier2d (void) const
{
  dim_vector dv = dims ();
  if (dv.length () < 2)
    return FloatComplexNDArray ();

  dim_vector dv2 (dv(0), dv(1));
  const FloatComplex *in = fortran_vec ();
  FloatComplexNDArray retval (dv);
  FloatComplex *out = retval.fortran_vec ();
  octave_idx_type howmany = numel () / dv(0) / dv(1);
  octave_idx_type dist = dv(0) * dv(1);

  for (octave_idx_type i=0; i < howmany; i++)
    octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::fourierNd (void) const
{
  dim_vector dv = dims ();
  int rank = dv.length ();

  const FloatComplex *in (fortran_vec ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::fftNd (in, out, rank, dv);

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourierNd (void) const
{
  dim_vector dv = dims ();
  int rank = dv.length ();

  const FloatComplex *in (fortran_vec ());
  FloatComplexNDArray retval (dv);
  FloatComplex *out (retval.fortran_vec ());

  octave_fftw::ifftNd (in, out, rank, dv);

  return retval;
}

#else

extern "C"
{
  F77_RET_T
  F77_FUNC (cffti, CFFTI) (const octave_idx_type&, FloatComplex*);

  F77_RET_T
  F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, FloatComplex*,
                           FloatComplex*);

  F77_RET_T
  F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, FloatComplex*,
                           FloatComplex*);
}

FloatComplexNDArray
FloatComplexNDArray::fourier (int dim) const
{
  dim_vector dv = dims ();

  if (dim > dv.length () || dim < 0)
    return FloatComplexNDArray ();

  FloatComplexNDArray retval (dv);
  octave_idx_type npts = dv(dim);
  octave_idx_type nn = 4*npts+15;
  Array<FloatComplex> wsave (dim_vector (nn, 1));
  FloatComplex *pwsave = wsave.fortran_vec ();

  OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts);

  octave_idx_type stride = 1;

  for (int i = 0; i < dim; i++)
    stride *= dv(i);

  octave_idx_type howmany = numel () / npts;
  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
  octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride);
  octave_idx_type dist = (stride == 1 ? npts : 1);

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type k = 0; k < nloop; k++)
    {
      for (octave_idx_type j = 0; j < howmany; j++)
        {
          octave_quit ();

          for (octave_idx_type i = 0; i < npts; i++)
            tmp[i] = elem ((i + k*npts)*stride + j*dist);

          F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave);

          for (octave_idx_type i = 0; i < npts; i++)
            retval((i + k*npts)*stride + j*dist) = tmp[i];
        }
    }

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourier (int dim) const
{
  dim_vector dv = dims ();

  if (dim > dv.length () || dim < 0)
    return FloatComplexNDArray ();

  FloatComplexNDArray retval (dv);
  octave_idx_type npts = dv(dim);
  octave_idx_type nn = 4*npts+15;
  Array<FloatComplex> wsave (dim_vector (nn, 1));
  FloatComplex *pwsave = wsave.fortran_vec ();

  OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts);

  octave_idx_type stride = 1;

  for (int i = 0; i < dim; i++)
    stride *= dv(i);

  octave_idx_type howmany = numel () / npts;
  howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany));
  octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride);
  octave_idx_type dist = (stride == 1 ? npts : 1);

  F77_FUNC (cffti, CFFTI) (npts, pwsave);

  for (octave_idx_type k = 0; k < nloop; k++)
    {
      for (octave_idx_type j = 0; j < howmany; j++)
        {
          octave_quit ();

          for (octave_idx_type i = 0; i < npts; i++)
            tmp[i] = elem ((i + k*npts)*stride + j*dist);

          F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave);

          for (octave_idx_type i = 0; i < npts; i++)
            retval((i + k*npts)*stride + j*dist) = tmp[i] /
                                                   static_cast<float> (npts);
        }
    }

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::fourier2d (void) const
{
  dim_vector dv = dims ();
  dim_vector dv2 (dv(0), dv(1));
  int rank = 2;
  FloatComplexNDArray retval (*this);
  octave_idx_type stride = 1;

  for (int i = 0; i < rank; i++)
    {
      octave_idx_type npts = dv2(i);
      octave_idx_type nn = 4*npts+15;
      Array<FloatComplex> wsave (dim_vector (nn, 1));
      FloatComplex *pwsave = wsave.fortran_vec ();
      Array<FloatComplex> row (dim_vector (npts, 1));
      FloatComplex *prow = row.fortran_vec ();

      octave_idx_type howmany = numel () / npts;
      howmany = (stride == 1 ? howmany :
                 (howmany > stride ? stride : howmany));
      octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride);
      octave_idx_type dist = (stride == 1 ? npts : 1);

      F77_FUNC (cffti, CFFTI) (npts, pwsave);

      for (octave_idx_type k = 0; k < nloop; k++)
        {
          for (octave_idx_type j = 0; j < howmany; j++)
            {
              octave_quit ();

              for (octave_idx_type l = 0; l < npts; l++)
                prow[l] = retval((l + k*npts)*stride + j*dist);

              F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave);

              for (octave_idx_type l = 0; l < npts; l++)
                retval((l + k*npts)*stride + j*dist) = prow[l];
            }
        }

      stride *= dv2(i);
    }

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourier2d (void) const
{
  dim_vector dv = dims ();
  dim_vector dv2 (dv(0), dv(1));
  int rank = 2;
  FloatComplexNDArray retval (*this);
  octave_idx_type stride = 1;

  for (int i = 0; i < rank; i++)
    {
      octave_idx_type npts = dv2(i);
      octave_idx_type nn = 4*npts+15;
      Array<FloatComplex> wsave (dim_vector (nn, 1));
      FloatComplex *pwsave = wsave.fortran_vec ();
      Array<FloatComplex> row (dim_vector (npts, 1));
      FloatComplex *prow = row.fortran_vec ();

      octave_idx_type howmany = numel () / npts;
      howmany = (stride == 1 ? howmany :
                 (howmany > stride ? stride : howmany));
      octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride);
      octave_idx_type dist = (stride == 1 ? npts : 1);

      F77_FUNC (cffti, CFFTI) (npts, pwsave);

      for (octave_idx_type k = 0; k < nloop; k++)
        {
          for (octave_idx_type j = 0; j < howmany; j++)
            {
              octave_quit ();

              for (octave_idx_type l = 0; l < npts; l++)
                prow[l] = retval((l + k*npts)*stride + j*dist);

              F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave);

              for (octave_idx_type l = 0; l < npts; l++)
                retval((l + k*npts)*stride + j*dist) =
                  prow[l] / static_cast<float> (npts);
            }
        }

      stride *= dv2(i);
    }

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::fourierNd (void) const
{
  dim_vector dv = dims ();
  int rank = dv.length ();
  FloatComplexNDArray retval (*this);
  octave_idx_type stride = 1;

  for (int i = 0; i < rank; i++)
    {
      octave_idx_type npts = dv(i);
      octave_idx_type nn = 4*npts+15;
      Array<FloatComplex> wsave (dim_vector (nn, 1));
      FloatComplex *pwsave = wsave.fortran_vec ();
      Array<FloatComplex> row (dim_vector (npts, 1));
      FloatComplex *prow = row.fortran_vec ();

      octave_idx_type howmany = numel () / npts;
      howmany = (stride == 1 ? howmany :
                 (howmany > stride ? stride : howmany));
      octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride);
      octave_idx_type dist = (stride == 1 ? npts : 1);

      F77_FUNC (cffti, CFFTI) (npts, pwsave);

      for (octave_idx_type k = 0; k < nloop; k++)
        {
          for (octave_idx_type j = 0; j < howmany; j++)
            {
              octave_quit ();

              for (octave_idx_type l = 0; l < npts; l++)
                prow[l] = retval((l + k*npts)*stride + j*dist);

              F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave);

              for (octave_idx_type l = 0; l < npts; l++)
                retval((l + k*npts)*stride + j*dist) = prow[l];
            }
        }

      stride *= dv(i);
    }

  return retval;
}

FloatComplexNDArray
FloatComplexNDArray::ifourierNd (void) const
{
  dim_vector dv = dims ();
  int rank = dv.length ();
  FloatComplexNDArray retval (*this);
  octave_idx_type stride = 1;

  for (int i = 0; i < rank; i++)
    {
      octave_idx_type npts = dv(i);
      octave_idx_type nn = 4*npts+15;
      Array<FloatComplex> wsave (dim_vector (nn, 1));
      FloatComplex *pwsave = wsave.fortran_vec ();
      Array<FloatComplex> row (dim_vector (npts, 1));
      FloatComplex *prow = row.fortran_vec ();

      octave_idx_type howmany = numel () / npts;
      howmany = (stride == 1 ? howmany :
                 (howmany > stride ? stride : howmany));
      octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride);
      octave_idx_type dist = (stride == 1 ? npts : 1);

      F77_FUNC (cffti, CFFTI) (npts, pwsave);

      for (octave_idx_type k = 0; k < nloop; k++)
        {
          for (octave_idx_type j = 0; j < howmany; j++)
            {
              octave_quit ();

              for (octave_idx_type l = 0; l < npts; l++)
                prow[l] = retval((l + k*npts)*stride + j*dist);

              F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave);

              for (octave_idx_type l = 0; l < npts; l++)
                retval((l + k*npts)*stride + j*dist) =
                  prow[l] / static_cast<float> (npts);
            }
        }

      stride *= dv(i);
    }

  return retval;
}

#endif

// unary operations

boolNDArray
FloatComplexNDArray::operator ! (void) const
{
  if (any_element_is_nan ())
    err_nan_to_logical_conversion ();

  return do_mx_unary_op<bool, FloatComplex> (*this, mx_inline_not);
}

// FIXME: this is not quite the right thing.

bool
FloatComplexNDArray::any_element_is_nan (void) const
{
  return do_mx_check<FloatComplex> (*this, mx_inline_any_nan);
}

bool
FloatComplexNDArray::any_element_is_inf_or_nan (void) const
{
  return ! do_mx_check<FloatComplex> (*this, mx_inline_all_finite);
}

// Return true if no elements have imaginary components.

bool
FloatComplexNDArray::all_elements_are_real (void) const
{
  return do_mx_check<FloatComplex> (*this, mx_inline_all_real);
}

// Return nonzero if any element of CM has a non-integer real or
// imaginary part.  Also extract the largest and smallest (real or
// imaginary) values and return them in MAX_VAL and MIN_VAL.

bool
FloatComplexNDArray::all_integers (float& max_val, float& min_val) const
{
  octave_idx_type nel = numel ();

  if (nel > 0)
    {
      FloatComplex val = elem (0);

      float r_val = std::real (val);
      float i_val = std::imag (val);

      max_val = r_val;
      min_val = r_val;

      if (i_val > max_val)
        max_val = i_val;

      if (i_val < max_val)
        min_val = i_val;
    }
  else
    return false;

  for (octave_idx_type i = 0; i < nel; i++)
    {
      FloatComplex val = elem (i);

      float r_val = std::real (val);
      float i_val = std::imag (val);

      if (r_val > max_val)
        max_val = r_val;

      if (i_val > max_val)
        max_val = i_val;

      if (r_val < min_val)
        min_val = r_val;

      if (i_val < min_val)
        min_val = i_val;

      if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val)
        return false;
    }

  return true;
}

bool
FloatComplexNDArray::too_large_for_float (void) const
{
  return false;
}

boolNDArray
FloatComplexNDArray::all (int dim) const
{
  return do_mx_red_op<bool, FloatComplex> (*this, dim, mx_inline_all);
}

boolNDArray
FloatComplexNDArray::any (int dim) const
{
  return do_mx_red_op<bool, FloatComplex> (*this, dim, mx_inline_any);
}

FloatComplexNDArray
FloatComplexNDArray::cumprod (int dim) const
{
  return do_mx_cum_op<FloatComplex, FloatComplex> (*this, dim,
                                                   mx_inline_cumprod);
}

FloatComplexNDArray
FloatComplexNDArray::cumsum (int dim) const
{
  return do_mx_cum_op<FloatComplex, FloatComplex> (*this, dim,
                                                   mx_inline_cumsum);
}

FloatComplexNDArray
FloatComplexNDArray::prod (int dim) const
{
  return do_mx_red_op<FloatComplex, FloatComplex> (*this, dim, mx_inline_prod);
}

ComplexNDArray
FloatComplexNDArray::dprod (int dim) const
{
  return do_mx_red_op<Complex, FloatComplex> (*this, dim, mx_inline_dprod);
}

FloatComplexNDArray
FloatComplexNDArray::sum (int dim) const
{
  return do_mx_red_op<FloatComplex, FloatComplex> (*this, dim, mx_inline_sum);
}

ComplexNDArray
FloatComplexNDArray::dsum (int dim) const
{
  return do_mx_red_op<Complex, FloatComplex> (*this, dim, mx_inline_dsum);
}

FloatComplexNDArray
FloatComplexNDArray::sumsq (int dim) const
{
  return do_mx_red_op<float, FloatComplex> (*this, dim, mx_inline_sumsq);
}

FloatComplexNDArray
FloatComplexNDArray::diff (octave_idx_type order, int dim) const
{
  return do_mx_diff_op<FloatComplex> (*this, dim, order, mx_inline_diff);
}

FloatComplexNDArray
FloatComplexNDArray::concat (const FloatComplexNDArray& rb,
                             const Array<octave_idx_type>& ra_idx)
{
  if (rb.numel () > 0)
    insert (rb, ra_idx);
  return *this;
}

FloatComplexNDArray
FloatComplexNDArray::concat (const FloatNDArray& rb,
                             const Array<octave_idx_type>& ra_idx)
{
  FloatComplexNDArray tmp (rb);
  if (rb.numel () > 0)
    insert (tmp, ra_idx);
  return *this;
}

FloatComplexNDArray
concat (NDArray& ra, FloatComplexNDArray& rb,
        const Array<octave_idx_type>& ra_idx)
{
  FloatComplexNDArray retval (ra);
  if (rb.numel () > 0)
    retval.insert (rb, ra_idx);
  return retval;
}

static const FloatComplex FloatComplex_NaN_result (octave_Float_NaN,
                                                   octave_Float_NaN);

FloatComplexNDArray
FloatComplexNDArray::max (int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, dim, mx_inline_max);
}

FloatComplexNDArray
FloatComplexNDArray::max (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, idx_arg, dim, mx_inline_max);
}

FloatComplexNDArray
FloatComplexNDArray::min (int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, dim, mx_inline_min);
}

FloatComplexNDArray
FloatComplexNDArray::min (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_minmax_op<FloatComplex> (*this, idx_arg, dim, mx_inline_min);
}

FloatComplexNDArray
FloatComplexNDArray::cummax (int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, dim, mx_inline_cummax);
}

FloatComplexNDArray
FloatComplexNDArray::cummax (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, idx_arg, dim,
                                           mx_inline_cummax);
}

FloatComplexNDArray
FloatComplexNDArray::cummin (int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, dim, mx_inline_cummin);
}

FloatComplexNDArray
FloatComplexNDArray::cummin (Array<octave_idx_type>& idx_arg, int dim) const
{
  return do_mx_cumminmax_op<FloatComplex> (*this, idx_arg, dim,
                                           mx_inline_cummin);
}

FloatNDArray
FloatComplexNDArray::abs (void) const
{
  return do_mx_unary_map<float, FloatComplex, std::abs> (*this);
}

boolNDArray
FloatComplexNDArray::isnan (void) const
{
  return do_mx_unary_map<bool, FloatComplex, xisnan> (*this);
}

boolNDArray
FloatComplexNDArray::isinf (void) const
{
  return do_mx_unary_map<bool, FloatComplex, xisinf> (*this);
}

boolNDArray
FloatComplexNDArray::isfinite (void) const
{
  return do_mx_unary_map<bool, FloatComplex, xfinite> (*this);
}

FloatComplexNDArray
conj (const FloatComplexNDArray& a)
{
  return do_mx_unary_map<FloatComplex, FloatComplex, std::conj<float> > (a);
}

FloatComplexNDArray&
FloatComplexNDArray::insert (const NDArray& a,
                             octave_idx_type r, octave_idx_type c)
{
  dim_vector a_dv = a.dims ();

  int n = a_dv.length ();

  if (n == dimensions.length ())
    {
      Array<octave_idx_type> a_ra_idx (dim_vector (a_dv.length (), 1), 0);

      a_ra_idx.elem (0) = r;
      a_ra_idx.elem (1) = c;

      for (int i = 0; i < n; i++)
        {
          if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dimensions(i))
            {
              (*current_liboctave_error_handler)
                ("Array<T>::insert: range error for insert");
              return *this;
            }
        }

      a_ra_idx.elem (0) = 0;
      a_ra_idx.elem (1) = 0;

      octave_idx_type n_elt = a.numel ();

      // IS make_unique () NECESSARY HERE?

      for (octave_idx_type i = 0; i < n_elt; i++)
        {
          Array<octave_idx_type> ra_idx = a_ra_idx;

          ra_idx.elem (0) = a_ra_idx(0) + r;
          ra_idx.elem (1) = a_ra_idx(1) + c;

          elem (ra_idx) = a.elem (a_ra_idx);

          increment_index (a_ra_idx, a_dv);
        }
    }
  else
    (*current_liboctave_error_handler)
      ("Array<T>::insert: invalid indexing operation");

  return *this;
}

FloatComplexNDArray&
FloatComplexNDArray::insert (const FloatComplexNDArray& a,
                             octave_idx_type r, octave_idx_type c)
{
  Array<FloatComplex>::insert (a, r, c);
  return *this;
}

FloatComplexNDArray&
FloatComplexNDArray::insert (const FloatComplexNDArray& a,
                             const Array<octave_idx_type>& ra_idx)
{
  Array<FloatComplex>::insert (a, ra_idx);
  return *this;
}

void
FloatComplexNDArray::increment_index (Array<octave_idx_type>& ra_idx,
                                      const dim_vector& dimensions,
                                      int start_dimension)
{
  ::increment_index (ra_idx, dimensions, start_dimension);
}

octave_idx_type
FloatComplexNDArray::compute_index (Array<octave_idx_type>& ra_idx,
                                    const dim_vector& dimensions)
{
  return ::compute_index (ra_idx, dimensions);
}

FloatComplexNDArray
FloatComplexNDArray::diag (octave_idx_type k) const
{
  return MArray<FloatComplex>::diag (k);
}

FloatComplexNDArray
FloatComplexNDArray::diag (octave_idx_type m, octave_idx_type n) const
{
  return MArray<FloatComplex>::diag (m, n);
}

// This contains no information on the array structure !!!
std::ostream&
operator << (std::ostream& os, const FloatComplexNDArray& a)
{
  octave_idx_type nel = a.numel ();

  for (octave_idx_type i = 0; i < nel; i++)
    {
      os << " ";
      octave_write_complex (os, a.elem (i));
      os << "\n";
    }
  return os;
}

std::istream&
operator >> (std::istream& is, FloatComplexNDArray& a)
{
  octave_idx_type nel = a.numel ();

  if (nel > 0)
    {
      FloatComplex tmp;
      for (octave_idx_type i = 0; i < nel; i++)
        {
          tmp = octave_read_value<FloatComplex> (is);
          if (is)
            a.elem (i) = tmp;
          else
            goto done;
        }
    }

done:

  return is;
}

MINMAX_FCNS (FloatComplexNDArray, FloatComplex)

NDS_CMP_OPS (FloatComplexNDArray, FloatComplex)
NDS_BOOL_OPS (FloatComplexNDArray, FloatComplex)

SND_CMP_OPS (FloatComplex, FloatComplexNDArray)
SND_BOOL_OPS (FloatComplex, FloatComplexNDArray)

NDND_CMP_OPS (FloatComplexNDArray, FloatComplexNDArray)
NDND_BOOL_OPS (FloatComplexNDArray, FloatComplexNDArray)

FloatComplexNDArray& operator *= (FloatComplexNDArray& a, float s)
{
  if (a.is_shared ())
    a = a * s;
  else
    do_ms_inplace_op<FloatComplex, float> (a, s, mx_inline_mul2);
  return a;
}

FloatComplexNDArray& operator /= (FloatComplexNDArray& a, float s)
{
  if (a.is_shared ())
    a = a / s;
  else
    do_ms_inplace_op<FloatComplex, float> (a, s, mx_inline_div2);
  return a;
}

BSXFUN_STDOP_DEFS_MXLOOP (FloatComplexNDArray)
BSXFUN_STDREL_DEFS_MXLOOP (FloatComplexNDArray)

BSXFUN_OP_DEF_MXLOOP (pow, FloatComplexNDArray, mx_inline_pow)