view libinterp/corefcn/det.cc @ 22197:e43d83253e28

refill multi-line macro definitions Use the Emacs C++ mode style for line continuation markers in multi-line macro definitions. * make_int.cc, __dsearchn__.cc, __magick_read__.cc, besselj.cc, bitfcns.cc, bsxfun.cc, cellfun.cc, data.cc, defun-dld.h, defun-int.h, defun.h, det.cc, error.h, find.cc, gcd.cc, graphics.cc, interpreter.h, jit-ir.h, jit-typeinfo.h, lookup.cc, ls-mat5.cc, max.cc, mexproto.h, mxarray.in.h, oct-stream.cc, ordschur.cc, pr-output.cc, profiler.h, psi.cc, regexp.cc, sparse-xdiv.cc, sparse-xpow.cc, tril.cc, txt-eng.h, utils.cc, variables.cc, variables.h, xdiv.cc, xpow.cc, __glpk__.cc, ov-base.cc, ov-base.h, ov-cell.cc, ov-ch-mat.cc, ov-classdef.cc, ov-complex.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-float.cc, ov-float.h, ov-flt-complex.cc, ov-flt-cx-mat.cc, ov-flt-re-mat.cc, ov-int-traits.h, ov-lazy-idx.h, ov-perm.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-scalar.h, ov-str-mat.cc, ov-type-conv.h, ov.cc, ov.h, op-class.cc, op-int-conv.cc, op-int.h, op-str-str.cc, ops.h, lex.ll, Array.cc, CMatrix.cc, CSparse.cc, MArray.cc, MArray.h, MDiagArray2.cc, MDiagArray2.h, MSparse.h, Sparse.cc, dMatrix.cc, dSparse.cc, fCMatrix.cc, fMatrix.cc, idx-vector.cc, f77-fcn.h, quit.h, bsxfun-decl.h, bsxfun-defs.cc, lo-specfun.cc, oct-convn.cc, oct-convn.h, oct-norm.cc, oct-norm.h, oct-rand.cc, Sparse-op-decls.h, Sparse-op-defs.h, mx-inlines.cc, mx-op-decl.h, mx-op-defs.h, mach-info.cc, oct-group.cc, oct-passwd.cc, oct-syscalls.cc, oct-time.cc, data-conv.cc, kpse.cc, lo-ieee.h, lo-macros.h, oct-cmplx.h, oct-glob.cc, oct-inttypes.cc, oct-inttypes.h, oct-locbuf.h, oct-sparse.h, url-transfer.cc, oct-conf-post.in.h, shared-fcns.h: Refill macro definitions.
author John W. Eaton <jwe@octave.org>
date Mon, 01 Aug 2016 12:40:18 -0400
parents 112b20240c87
children bac0d6f07a3e
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "DET.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "utils.h"
#include "ops.h"

#include "ov-re-mat.h"
#include "ov-cx-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-diag.h"
#include "ov-cx-diag.h"
#include "ov-flt-re-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-perm.h"

#define MAYBE_CAST(VAR, CLASS)                                          \
  const CLASS *VAR = (arg.type_id () == CLASS::static_type_id ()        \
                      ? dynamic_cast<const CLASS *> (&arg.get_rep ())   \
                      : 0)

DEFUN (det, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} det (@var{A})
@deftypefnx {} {[@var{d}, @var{rcond}] =} det (@var{A})
Compute the determinant of @var{A}.

Return an estimate of the reciprocal condition number if requested.

Programming Notes: Routines from @sc{lapack} are used for full matrices and
code from @sc{umfpack} is used for sparse matrices.

The determinant should not be used to check a matrix for singularity.
For that, use any of the condition number functions: @code{cond},
@code{condest}, @code{rcond}.
@seealso{cond, condest, rcond}
@end deftypefn */)
{
  if (args.length () != 1)
    print_usage ();

  octave_value arg = args(0);

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (nr == 0 && nc == 0)
    return ovl (1.0);

  int arg_is_empty = empty_arg ("det", nr, nc);
  if (arg_is_empty < 0)
    return ovl ();
  if (arg_is_empty > 0)
    return ovl (1.0);

  if (nr != nc)
    err_square_matrix_required ("det", "A");

  octave_value_list retval (2);

  bool isfloat = arg.is_single_type ();

  if (arg.is_diag_matrix ())
    {
      if (nargout <= 1)
        retval.resize (1);

      if (arg.is_complex_type ())
        {
          if (isfloat)
            {
              retval(0) = arg.float_complex_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_complex_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.complex_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.complex_diag_matrix_value ().rcond ();
            }
        }
      else
        {
          if (isfloat)
            {
              retval(0) = arg.float_diag_matrix_value ()
                          .determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.diag_matrix_value ().rcond ();
            }
        }
    }
  else if (arg.is_perm_matrix ())
    {
      if (nargout <= 1)
        retval.resize (1);

      retval(0) = static_cast<double> (arg.perm_matrix_value ().determinant ());
      if (nargout > 1)
        retval(1) = 1.0;
    }
  else if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          FloatMatrix m = arg.float_matrix_value ();

          MAYBE_CAST (rep, octave_float_matrix);
          MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
          FloatDET det = m.determinant (mtype, info, rcond);
          retval(0) = info == -1 ? 0.0f : det.value ();
          retval(1) = rcond;
          if (rep)
            rep->matrix_type (mtype);
        }
      else if (arg.is_complex_type ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          FloatComplexMatrix m = arg.float_complex_matrix_value ();

          MAYBE_CAST (rep, octave_float_complex_matrix);
          MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
          FloatComplexDET det = m.determinant (mtype, info, rcond);
          retval(0) = info == -1 ? FloatComplex (0.0) : det.value ();
          retval(1) = rcond;
          if (rep)
            rep->matrix_type (mtype);
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          if (arg.is_sparse_type ())
            {
              SparseMatrix m = arg.sparse_matrix_value ();

              DET det = m.determinant (info, rcond);
              retval(0) = info == -1 ? 0.0 : det.value ();
              retval(1) = rcond;
            }
          else
            {
              Matrix m = arg.matrix_value ();

              MAYBE_CAST (rep, octave_matrix);
              MatrixType mtype = rep ? rep -> matrix_type ()
                : MatrixType ();
              DET det = m.determinant (mtype, info, rcond);
              retval(0) = info == -1 ? 0.0 : det.value ();
              retval(1) = rcond;
              if (rep)
                rep->matrix_type (mtype);
            }
        }
      else if (arg.is_complex_type ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect singular matrices.
          if (arg.is_sparse_type ())
            {
              SparseComplexMatrix m = arg.sparse_complex_matrix_value ();

              ComplexDET det = m.determinant (info, rcond);
              retval(0) = info == -1 ? Complex (0.0) : det.value ();
              retval(1) = rcond;
            }
          else
            {
              ComplexMatrix m = arg.complex_matrix_value ();

              MAYBE_CAST (rep, octave_complex_matrix);
              MatrixType mtype = rep ? rep -> matrix_type ()
                : MatrixType ();
              ComplexDET det = m.determinant (mtype, info, rcond);
              retval(0) = info == -1 ? Complex (0.0) : det.value ();
              retval(1) = rcond;
              if (rep)
                rep->matrix_type (mtype);
            }
        }
      else
        err_wrong_type_arg ("det", arg);
    }

  return retval;
}

/*
%!assert (det ([1, 2; 3, 4]), -2, 10*eps)
%!assert (det (single ([1, 2; 3, 4])), single (-2), 10*eps ("single"))
%!error det ()
%!error det (1, 2)
%!error <must be a square matrix> det ([1, 2; 3, 4; 5, 6])
*/