view liboctave/array/MArray.cc @ 22197:e43d83253e28

refill multi-line macro definitions Use the Emacs C++ mode style for line continuation markers in multi-line macro definitions. * make_int.cc, __dsearchn__.cc, __magick_read__.cc, besselj.cc, bitfcns.cc, bsxfun.cc, cellfun.cc, data.cc, defun-dld.h, defun-int.h, defun.h, det.cc, error.h, find.cc, gcd.cc, graphics.cc, interpreter.h, jit-ir.h, jit-typeinfo.h, lookup.cc, ls-mat5.cc, max.cc, mexproto.h, mxarray.in.h, oct-stream.cc, ordschur.cc, pr-output.cc, profiler.h, psi.cc, regexp.cc, sparse-xdiv.cc, sparse-xpow.cc, tril.cc, txt-eng.h, utils.cc, variables.cc, variables.h, xdiv.cc, xpow.cc, __glpk__.cc, ov-base.cc, ov-base.h, ov-cell.cc, ov-ch-mat.cc, ov-classdef.cc, ov-complex.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-float.cc, ov-float.h, ov-flt-complex.cc, ov-flt-cx-mat.cc, ov-flt-re-mat.cc, ov-int-traits.h, ov-lazy-idx.h, ov-perm.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-scalar.h, ov-str-mat.cc, ov-type-conv.h, ov.cc, ov.h, op-class.cc, op-int-conv.cc, op-int.h, op-str-str.cc, ops.h, lex.ll, Array.cc, CMatrix.cc, CSparse.cc, MArray.cc, MArray.h, MDiagArray2.cc, MDiagArray2.h, MSparse.h, Sparse.cc, dMatrix.cc, dSparse.cc, fCMatrix.cc, fMatrix.cc, idx-vector.cc, f77-fcn.h, quit.h, bsxfun-decl.h, bsxfun-defs.cc, lo-specfun.cc, oct-convn.cc, oct-convn.h, oct-norm.cc, oct-norm.h, oct-rand.cc, Sparse-op-decls.h, Sparse-op-defs.h, mx-inlines.cc, mx-op-decl.h, mx-op-defs.h, mach-info.cc, oct-group.cc, oct-passwd.cc, oct-syscalls.cc, oct-time.cc, data-conv.cc, kpse.cc, lo-ieee.h, lo-macros.h, oct-cmplx.h, oct-glob.cc, oct-inttypes.cc, oct-inttypes.h, oct-locbuf.h, oct-sparse.h, url-transfer.cc, oct-conf-post.in.h, shared-fcns.h: Refill macro definitions.
author John W. Eaton <jwe@octave.org>
date Mon, 01 Aug 2016 12:40:18 -0400
parents 9b832e9caae6
children bac0d6f07a3e
line wrap: on
line source

/*

Copyright (C) 1993-2015 John W. Eaton
Copyright (C) 2009 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

// This file should not include config.h.  It is only included in other
// C++ source files that should have included config.h before including
// this file.

#include "MArray.h"
#include "Array-util.h"
#include "lo-error.h"

template <typename T>
struct _idxadds_helper
{
  T *array;
  T val;
  _idxadds_helper (T *a, T v) : array (a), val (v) { }
  void operator () (octave_idx_type i)
  { array[i] += val; }
};

template <typename T>
struct _idxadda_helper
{
  T *array;
  const T *vals;
  _idxadda_helper (T *a, const T *v) : array (a), vals (v) { }
  void operator () (octave_idx_type i)
  { array[i] += *vals++; }
};

template <typename T>
void
MArray<T>::idx_add (const idx_vector& idx, T val)
{
  octave_idx_type n = this->numel ();
  octave_idx_type ext = idx.extent (n);
  if (ext > n)
    {
      this->resize1 (ext);
      n = ext;
    }

  octave_quit ();

  octave_idx_type len = idx.length (n);
  idx.loop (len, _idxadds_helper<T> (this->fortran_vec (), val));
}

template <typename T>
void
MArray<T>::idx_add (const idx_vector& idx, const MArray<T>& vals)
{
  octave_idx_type n = this->numel ();
  octave_idx_type ext = idx.extent (n);
  if (ext > n)
    {
      this->resize1 (ext);
      n = ext;
    }

  octave_quit ();

  octave_idx_type len = std::min (idx.length (n), vals.numel ());
  idx.loop (len, _idxadda_helper<T> (this->fortran_vec (), vals.data ()));
}

template <typename T, T op (typename ref_param<T>::type,
                         typename ref_param<T>::type)>
struct _idxbinop_helper
{
  T *array;
  const T *vals;
  _idxbinop_helper (T *a, const T *v) : array (a), vals (v) { }
  void operator () (octave_idx_type i)
  { array[i] = op (array[i], *vals++); }
};

template <typename T>
void
MArray<T>::idx_min (const idx_vector& idx, const MArray<T>& vals)
{
  octave_idx_type n = this->numel ();
  octave_idx_type ext = idx.extent (n);
  if (ext > n)
    {
      this->resize1 (ext);
      n = ext;
    }

  octave_quit ();

  octave_idx_type len = std::min (idx.length (n), vals.numel ());
  idx.loop (len, _idxbinop_helper<T, octave::math::min> (this->fortran_vec (),
                                                         vals.data ()));
}

template <typename T>
void
MArray<T>::idx_max (const idx_vector& idx, const MArray<T>& vals)
{
  octave_idx_type n = this->numel ();
  octave_idx_type ext = idx.extent (n);
  if (ext > n)
    {
      this->resize1 (ext);
      n = ext;
    }

  octave_quit ();

  octave_idx_type len = std::min (idx.length (n), vals.numel ());
  idx.loop (len, _idxbinop_helper<T, octave::math::max> (this->fortran_vec (),
                                                         vals.data ()));
}

#include <iostream>

template <typename T>
void MArray<T>::idx_add_nd (const idx_vector& idx, const MArray<T>& vals,
                            int dim)
{
  int nd = std::max (this->ndims (), vals.ndims ());
  if (dim < 0)
    dim = vals.dims ().first_non_singleton ();
  else if (dim > nd)
    nd = dim;

  // Check dimensions.
  dim_vector ddv = Array<T>::dims ().redim (nd);
  dim_vector sdv = vals.dims ().redim (nd);

  octave_idx_type ext = idx.extent (ddv(dim));

  if (ext > ddv(dim))
    {
      ddv(dim) = ext;
      Array<T>::resize (ddv);
      ext = ddv(dim);
    }

  octave_idx_type l,n,u,ns;
  get_extent_triplet (ddv, dim, l, n, u);
  ns = sdv(dim);

  sdv(dim) = ddv(dim) = 0;
  if (ddv != sdv)
    (*current_liboctave_error_handler) ("accumdim: dimension mismatch");

  T *dst = Array<T>::fortran_vec ();
  const T *src = vals.data ();
  octave_idx_type len = idx.length (ns);

  if (l == 1)
    {
      for (octave_idx_type j = 0; j < u; j++)
        {
          octave_quit ();

          idx.loop (len, _idxadda_helper<T> (dst + j*n, src + j*ns));
        }
    }
  else
    {
      for (octave_idx_type j = 0; j < u; j++)
        {
          octave_quit ();
          for (octave_idx_type i = 0; i < len; i++)
            {
              octave_idx_type k = idx(i);

              mx_inline_add2 (l, dst + l*k, src + l*i);
            }

          dst += l*n;
          src += l*ns;
        }
    }
}

// N-dimensional array with math ops.
template <typename T>
void
MArray<T>::changesign (void)
{
  if (Array<T>::is_shared ())
    *this = - *this;
  else
    do_mx_inplace_op<T> (*this, mx_inline_uminus2);
}

// Element by element MArray by scalar ops.

template <typename T>
MArray<T>&
operator += (MArray<T>& a, const T& s)
{
  if (a.is_shared ())
    a = a + s;
  else
    do_ms_inplace_op<T, T> (a, s, mx_inline_add2);
  return a;
}

template <typename T>
MArray<T>&
operator -= (MArray<T>& a, const T& s)
{
  if (a.is_shared ())
    a = a - s;
  else
    do_ms_inplace_op<T, T> (a, s, mx_inline_sub2);
  return a;
}

template <typename T>
MArray<T>&
operator *= (MArray<T>& a, const T& s)
{
  if (a.is_shared ())
    a = a * s;
  else
    do_ms_inplace_op<T, T> (a, s, mx_inline_mul2);
  return a;
}

template <typename T>
MArray<T>&
operator /= (MArray<T>& a, const T& s)
{
  if (a.is_shared ())
    a = a / s;
  else
    do_ms_inplace_op<T, T> (a, s, mx_inline_div2);
  return a;
}

// Element by element MArray by MArray ops.

template <typename T>
MArray<T>&
operator += (MArray<T>& a, const MArray<T>& b)
{
  if (a.is_shared ())
    a = a + b;
  else
    do_mm_inplace_op<T, T> (a, b, mx_inline_add2, mx_inline_add2, "+=");
  return a;
}

template <typename T>
MArray<T>&
operator -= (MArray<T>& a, const MArray<T>& b)
{
  if (a.is_shared ())
    a = a - b;
  else
    do_mm_inplace_op<T, T> (a, b, mx_inline_sub2, mx_inline_sub2, "-=");
  return a;
}

template <typename T>
MArray<T>&
product_eq (MArray<T>& a, const MArray<T>& b)
{
  if (a.is_shared ())
    return a = product (a, b);
  else
    do_mm_inplace_op<T, T> (a, b, mx_inline_mul2, mx_inline_mul2, ".*=");
  return a;
}

template <typename T>
MArray<T>&
quotient_eq (MArray<T>& a, const MArray<T>& b)
{
  if (a.is_shared ())
    return a = quotient (a, b);
  else
    do_mm_inplace_op<T, T> (a, b, mx_inline_div2, mx_inline_div2, "./=");
  return a;
}

// Element by element MArray by scalar ops.

#define MARRAY_NDS_OP(OP, FN)                   \
  template <typename T>                         \
  MArray<T>                                     \
  operator OP (const MArray<T>& a, const T& s)  \
  {                                             \
    return do_ms_binary_op<T, T, T> (a, s, FN); \
  }

MARRAY_NDS_OP (+, mx_inline_add)
MARRAY_NDS_OP (-, mx_inline_sub)
MARRAY_NDS_OP (*, mx_inline_mul)
MARRAY_NDS_OP (/, mx_inline_div)

// Element by element scalar by MArray ops.

#define MARRAY_SND_OP(OP, FN)                   \
  template <typename T>                         \
  MArray<T>                                     \
  operator OP (const T& s, const MArray<T>& a)  \
  {                                             \
    return do_sm_binary_op<T, T, T> (s, a, FN); \
  }

MARRAY_SND_OP (+, mx_inline_add)
MARRAY_SND_OP (-, mx_inline_sub)
MARRAY_SND_OP (*, mx_inline_mul)
MARRAY_SND_OP (/, mx_inline_div)

// Element by element MArray by MArray ops.

#define MARRAY_NDND_OP(FCN, OP, FN) \
  template <typename T> \
  MArray<T> \
  FCN (const MArray<T>& a, const MArray<T>& b) \
  { \
    return do_mm_binary_op<T, T, T> (a, b, FN, FN, FN, #FCN); \
  }

MARRAY_NDND_OP (operator +, +, mx_inline_add)
MARRAY_NDND_OP (operator -, -, mx_inline_sub)
MARRAY_NDND_OP (product,    *, mx_inline_mul)
MARRAY_NDND_OP (quotient,   /, mx_inline_div)

template <typename T>
MArray<T>
operator + (const MArray<T>& a)
{
  return a;
}

template <typename T>
MArray<T>
operator - (const MArray<T>& a)
{
  return do_mx_unary_op<T, T> (a, mx_inline_uminus);
}