view liboctave/util/oct-locbuf.h @ 22197:e43d83253e28

refill multi-line macro definitions Use the Emacs C++ mode style for line continuation markers in multi-line macro definitions. * make_int.cc, __dsearchn__.cc, __magick_read__.cc, besselj.cc, bitfcns.cc, bsxfun.cc, cellfun.cc, data.cc, defun-dld.h, defun-int.h, defun.h, det.cc, error.h, find.cc, gcd.cc, graphics.cc, interpreter.h, jit-ir.h, jit-typeinfo.h, lookup.cc, ls-mat5.cc, max.cc, mexproto.h, mxarray.in.h, oct-stream.cc, ordschur.cc, pr-output.cc, profiler.h, psi.cc, regexp.cc, sparse-xdiv.cc, sparse-xpow.cc, tril.cc, txt-eng.h, utils.cc, variables.cc, variables.h, xdiv.cc, xpow.cc, __glpk__.cc, ov-base.cc, ov-base.h, ov-cell.cc, ov-ch-mat.cc, ov-classdef.cc, ov-complex.cc, ov-cx-mat.cc, ov-cx-sparse.cc, ov-float.cc, ov-float.h, ov-flt-complex.cc, ov-flt-cx-mat.cc, ov-flt-re-mat.cc, ov-int-traits.h, ov-lazy-idx.h, ov-perm.cc, ov-re-mat.cc, ov-re-sparse.cc, ov-scalar.cc, ov-scalar.h, ov-str-mat.cc, ov-type-conv.h, ov.cc, ov.h, op-class.cc, op-int-conv.cc, op-int.h, op-str-str.cc, ops.h, lex.ll, Array.cc, CMatrix.cc, CSparse.cc, MArray.cc, MArray.h, MDiagArray2.cc, MDiagArray2.h, MSparse.h, Sparse.cc, dMatrix.cc, dSparse.cc, fCMatrix.cc, fMatrix.cc, idx-vector.cc, f77-fcn.h, quit.h, bsxfun-decl.h, bsxfun-defs.cc, lo-specfun.cc, oct-convn.cc, oct-convn.h, oct-norm.cc, oct-norm.h, oct-rand.cc, Sparse-op-decls.h, Sparse-op-defs.h, mx-inlines.cc, mx-op-decl.h, mx-op-defs.h, mach-info.cc, oct-group.cc, oct-passwd.cc, oct-syscalls.cc, oct-time.cc, data-conv.cc, kpse.cc, lo-ieee.h, lo-macros.h, oct-cmplx.h, oct-glob.cc, oct-inttypes.cc, oct-inttypes.h, oct-locbuf.h, oct-sparse.h, url-transfer.cc, oct-conf-post.in.h, shared-fcns.h: Refill macro definitions.
author John W. Eaton <jwe@octave.org>
date Mon, 01 Aug 2016 12:40:18 -0400
parents b571fc85953f
children bac0d6f07a3e
line wrap: on
line source

/*

Copyright (C) 2008-2015 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if ! defined (octave_oct_locbuf_h)
#define octave_oct_locbuf_h 1

#include "octave-config.h"

#include <cstddef>
#include "oct-cmplx.h"

// The default local buffer simply encapsulates an *array* pointer
// that gets deleted automatically.  For common POD types, we provide
// specializations.

template <typename T>
class octave_local_buffer
{
public:
  octave_local_buffer (size_t size)
    : data (0)
  {
    if (size)
      data = new T [size];
  }

  ~octave_local_buffer (void) { delete [] data; }

  operator T *() const { return data; }

private:
  T *data;

  // No copying!
  octave_local_buffer (const octave_local_buffer&);
  octave_local_buffer& operator = (const octave_local_buffer&);
};

// For buffers of POD types, we'll be smarter.  There is one thing
// that differentiates a local buffer from a dynamic array - the local
// buffers, if not manipulated improperly, have a FIFO semantics,
// meaning that if buffer B is allocated after buffer A, B *must* be
// deallocated before A.  This is *guaranteed* if you use local buffer
// exclusively through the OCTAVE_LOCAL_BUFFER macro, because the C++
// standard requires that explicit local objects be destroyed in
// reverse order of declaration.  Therefore, we can avoid memory
// fragmentation by allocating fairly large chunks of memory and
// serving local buffers from them in a stack-like manner.  The first
// returning buffer in previous chunk will be responsible for
// deallocating the chunk.

class octave_chunk_buffer
{
public:

  OCTAVE_API octave_chunk_buffer (size_t size);

  OCTAVE_API virtual ~octave_chunk_buffer (void);

  char *data (void) const { return dat; }

  static OCTAVE_API void clear (void);

private:

  // The number of bytes we allocate for each large chunk of memory we
  // manage.
  static const size_t chunk_size;

  // Pointer to the end end of the last allocation.
  static char *top;

  // Pointer to the current active chunk.
  static char *chunk;

  // The number of bytes remaining in the active chunk.
  static size_t left;

  // The number of active allocations.
  static size_t active;

  // Pointer to the current chunk.
  char *cnk;

  // Pointer to the beginning of the most recent allocation.
  char *dat;

  // No copying!
  octave_chunk_buffer (const octave_chunk_buffer&);
  octave_chunk_buffer& operator = (const octave_chunk_buffer&);
};

// This specializes octave_local_buffer to use the chunked buffer
// mechanism for POD types.
#define SPECIALIZE_POD_BUFFER(TYPE)                             \
  template <>                                                   \
  class octave_local_buffer<TYPE> : private octave_chunk_buffer \
  {                                                             \
  public:                                                       \
    octave_local_buffer (size_t size)                           \
      : octave_chunk_buffer (size * sizeof (TYPE)) { }          \
                                                                \
    operator TYPE *() const                                     \
    {                                                           \
      return reinterpret_cast<TYPE *> (this->data ());          \
    }                                                           \
  }

SPECIALIZE_POD_BUFFER (bool);
SPECIALIZE_POD_BUFFER (char);
SPECIALIZE_POD_BUFFER (unsigned short);
SPECIALIZE_POD_BUFFER (short);
SPECIALIZE_POD_BUFFER (int);
SPECIALIZE_POD_BUFFER (unsigned int);
SPECIALIZE_POD_BUFFER (long);
SPECIALIZE_POD_BUFFER (unsigned long);
SPECIALIZE_POD_BUFFER (float);
SPECIALIZE_POD_BUFFER (double);
// FIXME: Are these guaranteed to be POD and satisfy alignment?
SPECIALIZE_POD_BUFFER (Complex);
SPECIALIZE_POD_BUFFER (FloatComplex);
// MORE ?

// All pointers and const pointers are also POD types.
template <typename T>
class octave_local_buffer<T *> : private octave_chunk_buffer
{
public:
  octave_local_buffer (size_t size)
    : octave_chunk_buffer (size * sizeof (T *))
  { }

  operator T **() const { return reinterpret_cast<T **> (this->data ()); }
};

template <typename T>
class octave_local_buffer<const T *> : private octave_chunk_buffer
{
public:
  octave_local_buffer (size_t size)
    : octave_chunk_buffer (size * sizeof (const T *))
  { }

  operator const T **() const
  {
    return reinterpret_cast<const T **> (this->data ());
  }
};

// If the compiler supports dynamic stack arrays, we can use the
// attached hack to place small buffer arrays on the stack.  It may be
// even faster than our obstack-like optimization, but is dangerous
// because stack is a very limited resource, so we disable it.

#if 0 // defined (HAVE_DYNAMIC_AUTO_ARRAYS)

// Maximum buffer size (in bytes) to be placed on the stack.

#define OCTAVE_LOCAL_BUFFER_MAX_STACK_SIZE 8192

// If we have automatic arrays, we use an automatic array if the size
// is small enough.  To avoid possibly evaluating 'size' multiple
// times, we first cache it.  Note that we always construct both the
// stack array and the octave_local_buffer object, but only one of
// them will be nonempty.

#define OCTAVE_LOCAL_BUFFER(T, buf, size)                               \
  const size_t _bufsize_ ## buf = size;                                 \
  const bool _lbufaut_ ## buf = _bufsize_ ## buf * sizeof (T)           \
    <= OCTAVE_LOCAL_BUFFER_MAX_STACK_SIZE;                              \
  T _bufaut_ ## buf [_lbufaut_ ## buf ? _bufsize_ ## buf : 0];          \
  octave_local_buffer<T> _bufheap_ ## buf (! _lbufaut_ ## buf ? _bufsize_ ## buf : 0); \
  T *buf = (_lbufaut_ ## buf                                            \
            ? _bufaut_ ## buf : static_cast<T *> (_bufheap_ ## buf))

#else

// If we don't have automatic arrays, we simply always use
// octave_local_buffer.

#define OCTAVE_LOCAL_BUFFER(T, buf, size)               \
  octave_local_buffer<T> _buffer_ ## buf (size);        \
  T *buf = _buffer_ ## buf

#endif

// Note: we use weird variables in the for loop to avoid warnings
// about shadowed parameters.

#define OCTAVE_LOCAL_BUFFER_INIT(T, buf, size, value)   \
  OCTAVE_LOCAL_BUFFER (T, buf, size);                   \
  for (size_t _buf_iter = 0, _buf_size = size;          \
       _buf_iter < _buf_size; _buf_iter++)              \
    buf[_buf_iter] = value

#endif